Show simple item record

dc.contributor.authorThomas, Brian
dc.contributor.authorThronson, Harley
dc.contributor.authorBuonomo, Anthony
dc.contributor.authorBarbier, Louis
dc.date.accessioned2022-01-28T14:38:49Z
dc.date.available2022-01-28T14:38:49Z
dc.date.issued2022-01-11
dc.date.submitted2021-12-14
dc.identifier.issn2515-5172
dc.identifier.otherrnaasac4990
dc.identifier.otherac4990
dc.identifier.otheraas36602
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333004
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We summarize the first exploratory investigation into whether Machine Learning techniques can augment science strategic planning. We find that an approach based on Latent Dirichlet Allocation using abstracts drawn from high-impact astronomy journals may provide a leading indicator of future interest in a research topic. We show two topic metrics that correlate well with the high-priority research areas identified by the 2010 National Academies’ Astronomy and Astrophysics Decadal Survey. One metric is based on a sum of the fractional contribution to each topic by all scientific papers (“counts”) while the other is the Compound Annual Growth Rate of counts. These same metrics also show the same degree of correlation with the whitepapers submitted to the same Decadal Survey. Our results suggest that the Decadal Survey may under-emphasize fast growing research. A preliminary version of our work was presented by Thronson et al.</jats:p>
dc.languageen
dc.publisherAmerican Astronomical Society
dc.subject370
dc.subjectLaboratory Astrophysics, Instrumentation, Software, and Data
dc.titleDetermining Research Priorities for Astronomy Using Machine Learning
dc.typeArticle
dc.date.updated2022-01-28T14:38:49Z
prism.issueIdentifier1
prism.publicationNameResearch Notes of the AAS
prism.volume6
dc.identifier.doi10.17863/CAM.80428
dcterms.dateAccepted2022-01-10
rioxxterms.versionofrecord10.3847/2515-5172/ac4990
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidThomas, Brian [0000-0003-1623-9035]
dc.identifier.eissn2515-5172
cam.issuedOnline2022-01-11


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record