Consistent Analysis of the AGN LF in X-Ray and MIR in the XMM-LSS Field
Authors
Pitchford, LK
Publication Date
2022-01-01Journal Title
Astrophysical Journal
ISSN
0004-637X
Publisher
American Astronomical Society
Volume
924
Issue
2
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Runburg, J., Farrah, D., Sajina, A., Lacy, M., Lidua, J., Hatziminaoglou, E., Brandt, W., et al. (2022). Consistent Analysis of the AGN LF in X-Ray and MIR in the XMM-LSS Field. Astrophysical Journal, 924 (2) https://doi.org/10.3847/1538-4357/ac37b8
Abstract
<jats:title>Abstract</jats:title>
<jats:p>The luminosity function of active galactic nuclei (AGN) probes the history of supermassive black hole assembly and growth across cosmic time. To mitigate selection biases, we present a consistent analysis of the AGN luminosity functions (LFs) derived for both X-ray and mid-infrared (MIR) selected AGN in the XMM-Large Scale Structure field. There are 4268 AGN used to construct the MIR luminosity function (IRLF) and 3427 AGN used to construct the X-ray luminosity function (XLF), providing the largest census of the AGN population out to <jats:italic>z</jats:italic> = 4 in both bands with significant reduction in uncertainties. We are able for the first time to see the knee of the IRLF at <jats:italic>z</jats:italic> > 2 and observe a flattening of the faint-end slope as redshift increases. The bolometric luminosity density, a proxy for the cosmic black hole accretion history, computed from our LFs, shows a peak at <jats:italic>z</jats:italic> ≈ 2.25, consistent with recent estimates of the peak in the star formation rate density (SFRD). However, at earlier epochs, the AGN luminosity density is flatter than the SFRD. If confirmed, this result suggests that the build up of black hole mass outpaces the growth of stellar mass in high-mass systems at <jats:italic>z</jats:italic> ≳ 2.5. This is consistent with observations of redshift <jats:italic>z</jats:italic> ∼ 6 quasars that lie above the local <jats:italic>M</jats:italic> − <jats:italic>σ</jats:italic> relationship. The luminosity density derived from the IRLF is higher than that from the XLF at all redshifts. This is consistent with the dominant role of obscured AGN activity in the cosmic growth of supermassive black holes.</jats:p>
Keywords
310, Galaxies and Cosmology
Sponsorship
NSF (AST-1934744)
Identifiers
apjac37b8, ac37b8, aas34264
External DOI: https://doi.org/10.3847/1538-4357/ac37b8
This record's URL: https://www.repository.cam.ac.uk/handle/1810/333167
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.