Limit profiles for reversible Markov chains
dc.contributor.author | Nestoridi, Evita | |
dc.contributor.author | Olesker-Taylor, Sam | |
dc.date.accessioned | 2022-01-28T16:36:21Z | |
dc.date.available | 2022-01-28T16:36:21Z | |
dc.date.issued | 2022-02 | |
dc.date.submitted | 2020-07-15 | |
dc.identifier.issn | 0178-8051 | |
dc.identifier.other | s00440-021-01061-5 | |
dc.identifier.other | 1061 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/333172 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>In a recent breakthrough, Teyssier (Ann Probab 48(5):2323–2343, 2020) introduced a new method for approximating the distance from equilibrium of a random walk on a group. He used it to study the limit profile for the random transpositions card shuffle. His techniques were restricted to conjugacy-invariant random walks on groups; we derive similar approximation lemmas for random walks on homogeneous spaces and for general reversible Markov chains. We illustrate applications of these lemmas to some famous problems: the <jats:italic>k</jats:italic>-cycle shuffle, sharpening results of Hough (Probab Theory Relat Fields 165(1–2):447–482, 2016) and Berestycki, Schramm and Zeitouni (Ann Probab 39(5):1815–1843, 2011), the Ehrenfest urn diffusion with many urns, sharpening results of Ceccherini-Silberstein, Scarabotti and Tolli (J Math Sci 141(2):1182–1229, 2007), a Gibbs sampler, which is a fundamental tool in statistical physics, with Binomial prior and hypergeometric posterior, sharpening results of Diaconis, Khare and Saloff-Coste (Stat Sci 23(2):151–178, 2008).</jats:p> | |
dc.language | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.subject | Article | |
dc.subject | Cutoff | |
dc.subject | Limit profiles | |
dc.subject | Random walk on groups | |
dc.subject | Symmetric group | |
dc.subject | Representation theory | |
dc.subject | Fourier transform | |
dc.subject | Characters | |
dc.subject | Gelfand pairs | |
dc.subject | Homogeneous spaces | |
dc.subject | Spherical functions | |
dc.subject | Eigenvalues and eigenfunctions of Markov chains | |
dc.subject | Spectral representations | |
dc.subject | 20C15 | |
dc.subject | 20C30 | |
dc.subject | 43A30 | |
dc.subject | 43A65 | |
dc.subject | 43A90 | |
dc.subject | 60B15 | |
dc.subject | 60J10 | |
dc.subject | 60J20 | |
dc.title | Limit profiles for reversible Markov chains | |
dc.type | Article | |
dc.date.updated | 2022-01-28T16:36:21Z | |
prism.endingPage | 188 | |
prism.issueIdentifier | 1-2 | |
prism.publicationName | Probability Theory and Related Fields | |
prism.startingPage | 157 | |
prism.volume | 182 | |
dc.identifier.doi | 10.17863/CAM.80595 | |
dcterms.dateAccepted | 2021-04-29 | |
rioxxterms.versionofrecord | 10.1007/s00440-021-01061-5 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.contributor.orcid | Olesker-Taylor, Sam [0000-0001-9764-1645] | |
dc.identifier.eissn | 1432-2064 | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/R022615/1, Doctoral Training Grant 1885554) | |
cam.issuedOnline | 2021-07-14 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router