Show simple item record

dc.contributor.authorFang, Wei
dc.contributor.authorWang, Zhenru
dc.contributor.authorGiles, Michael B
dc.contributor.authorJackson, Chris H
dc.contributor.authorWelton, Nicky J
dc.contributor.authorAndrieu, Christophe
dc.contributor.authorThom, Howard
dc.date.accessioned2022-01-28T16:39:20Z
dc.date.available2022-01-28T16:39:20Z
dc.date.issued2022-02
dc.date.submitted2019-03-25
dc.identifier.issn0272-989X
dc.identifier.other10.1177_0272989x211026305
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333207
dc.description.abstractThe expected value of partial perfect information (EVPPI) provides an upper bound on the value of collecting further evidence on a set of inputs to a cost-effectiveness decision model. Standard Monte Carlo estimation of EVPPI is computationally expensive as it requires nested simulation. Alternatives based on regression approximations to the model have been developed but are not practicable when the number of uncertain parameters of interest is large and when parameter estimates are highly correlated. The error associated with the regression approximation is difficult to determine, while MC allows the bias and precision to be controlled. In this article, we explore the potential of quasi Monte Carlo (QMC) and multilevel Monte Carlo (MLMC) estimation to reduce the computational cost of estimating EVPPI by reducing the variance compared with MC while preserving accuracy. We also develop methods to apply QMC and MLMC to EVPPI, addressing particular challenges that arise where Markov chain Monte Carlo (MCMC) has been used to estimate input parameter distributions. We illustrate the methods using 2 examples: a simplified decision tree model for treatments for depression and a complex Markov model for treatments to prevent stroke in atrial fibrillation, both of which use MCMC inputs. We compare the performance of QMC and MLMC with MC and the approximation techniques of generalized additive model (GAM) regression, Gaussian process (GP) regression, and integrated nested Laplace approximations (INLA-GP). We found QMC and MLMC to offer substantial computational savings when parameter sets are large and correlated and when the EVPPI is large. We also found that GP and INLA-GP were biased in those situations, whereas GAM cannot estimate EVPPI for large parameter sets.
dc.languageen
dc.publisherSAGE Publications
dc.subjectexpected value of partial perfect information
dc.subjectmultilevel Monte Carlo
dc.subjectnested expectations
dc.subjectquasi Monte Carlo
dc.subjectBayes Theorem
dc.subjectComputer Simulation
dc.subjectCost-Benefit Analysis
dc.subjectHumans
dc.subjectMarkov Chains
dc.subjectMonte Carlo Method
dc.subjectUncertainty
dc.titleMultilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information.
dc.typeArticle
dc.date.updated2022-01-28T16:39:19Z
prism.endingPage181
prism.issueIdentifier2
prism.publicationNameMed Decis Making
prism.startingPage168
prism.volume42
dc.identifier.doi10.17863/CAM.80630
dcterms.dateAccepted2021-05-21
rioxxterms.versionofrecord10.1177/0272989X211026305
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
rioxxterms.licenseref.startdate2021-07-07
dc.contributor.orcidFang, Wei [0000-0002-2423-1431]
dc.contributor.orcidAndrieu, Christophe [0000-0002-6656-8913]
dc.contributor.orcidThom, Howard [0000-0001-8576-5552]
dc.identifier.eissn1552-681X
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R018561/1)
pubs.funder-project-idEPSRC (EP/P020720/2)
cam.issuedOnline2021-07-07
rioxxterms.freetoread.startdate2021-07-07
rioxxterms.freetoread.startdate2021-07-07


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record