Show simple item record

dc.contributor.authorRan, Y
dc.contributor.authorZou, Z
dc.contributor.authorLiu, B
dc.contributor.authorWang, D
dc.contributor.authorPu, B
dc.contributor.authorMi, P
dc.contributor.authorShi, W
dc.contributor.authorLi, Y
dc.contributor.authorHe, B
dc.contributor.authorLu, Z
dc.contributor.authorLu, X
dc.contributor.authorLi, B
dc.contributor.authorShi, S
dc.date.accessioned2022-01-28T16:42:40Z
dc.date.available2022-01-28T16:42:40Z
dc.date.issued2021-11-12
dc.date.submitted2021-03-22
dc.identifier.issn2057-3960
dc.identifier.others41524-021-00653-y
dc.identifier.other653
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333259
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li<jats:sub>0.</jats:sub><jats:sub>75</jats:sub>CoO<jats:sub>2</jats:sub>, Li<jats:sub>0.</jats:sub><jats:sub>8333</jats:sub>CoO<jats:sub>2</jats:sub>, and Li<jats:sub>0.8571</jats:sub>CoO<jats:sub>2</jats:sub> phases and report a new Li<jats:sub>0.875</jats:sub>CoO<jats:sub>2</jats:sub> ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li<jats:sub>0.0625</jats:sub>C<jats:sub>6</jats:sub> dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li<jats:sub>3<jats:italic>x</jats:italic></jats:sub>La<jats:sub>2/3−<jats:italic>x</jats:italic></jats:sub>TiO<jats:sub>3</jats:sub> (0 &lt; <jats:italic>x</jats:italic> &lt; 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry.</jats:p>
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subject/639/766/25
dc.subject/639/301/1034/1035
dc.subjectarticle
dc.titleTowards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation
dc.typeArticle
dc.date.updated2022-01-28T16:42:39Z
prism.issueIdentifier1
prism.publicationNamenpj Computational Materials
prism.volume7
dc.identifier.doi10.17863/CAM.80682
dcterms.dateAccepted2021-10-21
rioxxterms.versionofrecord10.1038/s41524-021-00653-y
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidHe, B [0000-0002-6796-941X]
dc.contributor.orcidLi, B [0000-0002-9266-1791]
dc.contributor.orcidShi, S [0000-0001-8988-9763]
dc.identifier.eissn2057-3960
pubs.funder-project-idNational Natural Science Foundation of China (National Science Foundation of China) (11874254)
cam.issuedOnline2021-11-12


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record