Show simple item record

dc.contributor.authorHall, Allison E
dc.contributor.authorLisci, Miriam
dc.contributor.authorRose, Mark D
dc.date.accessioned2022-01-28T16:48:02Z
dc.date.available2022-01-28T16:48:02Z
dc.date.issued2021-12-08
dc.identifier.citationJournal of fungi (Basel, Switzerland), volume 7, issue 12
dc.identifier.issn2309-608X
dc.identifier.other34947031
dc.identifier.otherPMC8703914
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333329
dc.description.abstractThe primary role of the Cell Wall Integrity Pathway (CWI) in Saccharomyces cerevisiae is monitoring the state of the cell wall in response to general life cycle stresses (growth and mating) and imposed stresses (temperature changes and chemicals). Of the five mechanosensor proteins monitoring cell wall stress, Wsc1p and Mid2p are the most important. We find that WSC1 has a stringent requirement in zygotes and diploids, unlike haploids, and differing from MID2's role in shmoos. Diploids lacking WSC1 die frequently, independent of mating type. Death is due to loss of cell wall and plasma membrane integrity, which is suppressed by osmotic support. Overexpression of several CWI pathway components suppress wsc1∆ zygotic death, including WSC2, WSC3, and BEM2, as well as the Rho-GAPS, BEM3 and RGD2. Microscopic observations and suppression by BEM2 and BEM3 suggest that wsc1∆ zygotes die during bud emergence. Downstream in the CWI pathway, overexpression of a hyperactive protein kinase C (Pkc1p-R398P) causes growth arrest, and blocks the pheromone response. With moderate levels of Pkc1p-R398P, cells form zygotes and the wsc1∆ defect is suppressed. This work highlights functional differences in the requirement for Wsc1p in diploids Versus haploids and between Mid2p and Wsc1p during mating.
dc.languageeng
dc.publisherMDPI AG
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 101671827
dc.sourceessn: 2309-608X
dc.subjectConjugation
dc.subjectYeast
dc.subjectPloidy
dc.subjectProtein kinase C
dc.subjectLysis
dc.subjectCell Wall Integrity
dc.titleDifferential Requirement for the Cell Wall Integrity Sensor Wsc1p in Diploids Versus Haploids.
dc.typeArticle
dc.date.updated2022-01-28T16:48:01Z
prism.publicationNameJ Fungi (Basel)
dc.identifier.doi10.17863/CAM.80752
dcterms.dateAccepted2021-12-04
rioxxterms.versionofrecord10.3390/jof7121049
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidLisci, Miriam [0000-0002-8627-4154]
dc.contributor.orcidRose, Mark D [0000-0003-1112-4765]
dc.identifier.eissn2309-608X
pubs.funder-project-idNIH HHS (GM007388, R35GM126998)
pubs.funder-project-idNational Institute of Health (R01GM037739)
cam.issuedOnline2021-12-08


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International