A numerically stable algorithm for integrating Bayesian models using Markov melding
dc.contributor.author | Manderson, Andrew | |
dc.contributor.author | Goudie, Robert | |
dc.date.accessioned | 2022-02-02T00:30:57Z | |
dc.date.available | 2022-02-02T00:30:57Z | |
dc.identifier.issn | 0960-3174 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/333533 | |
dc.description.abstract | When statistical analyses consider multiple data sources, Markov melding provides a method for combining the source-specific Bayesian models. Markov melding joins together submodels that have a common quantity. One challenge is that the prior for this quantity can be implicit, and its prior density must be estimated. We show that error in this density estimate makes the two-stage Markov chain Monte Carlo sampler employed by Markov melding unstable and unreliable. We propose a robust two-stage algorithm that estimates the required prior marginal self-density ratios using weighted samples, dramatically improving accuracy in the tails of the distribution. The stabilised version of the algorithm is pragmatic and provides reliable inference. We demonstrate our approach using an evidence synthesis for inferring HIV prevalence, and an evidence synthesis of A/H1N1 influenza. | |
dc.publisher | Springer | |
dc.rights | All Rights Reserved | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
dc.title | A numerically stable algorithm for integrating Bayesian models using Markov melding | |
dc.type | Article | |
dc.publisher.department | Mrc Biostatistics Unit | |
dc.date.updated | 2022-01-31T14:40:48Z | |
prism.publicationName | Statistics and Computing | |
dc.identifier.doi | 10.17863/CAM.80953 | |
dcterms.dateAccepted | 2022-01-29 | |
rioxxterms.version | AM | |
dc.contributor.orcid | Manderson, Andrew [0000-0002-4946-9016] | |
dc.contributor.orcid | Goudie, Robert [0000-0001-9554-1499] | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | MRC (unknown) | |
pubs.funder-project-id | Alan Turing Institute (Andrew Manderson) | |
cam.orpheus.counter | 38 | * |
cam.depositDate | 2022-01-31 | |
pubs.licence-identifier | apollo-deposit-licence-2-1 | |
pubs.licence-display-name | Apollo Repository Deposit Licence Agreement | |
rioxxterms.freetoread.startdate | 2025-02-01 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge