Show simple item record

dc.contributor.authorMcGovern, Lucie
dc.contributor.authorGrimaldi, Gianluca
dc.contributor.authorFutscher, Moritz H
dc.contributor.authorHutter, Eline M
dc.contributor.authorMuscarella, Loreta A
dc.contributor.authorSchmidt, Moritz C
dc.contributor.authorEhrler, Bruno
dc.date.accessioned2022-02-03T01:55:55Z
dc.date.available2022-02-03T01:55:55Z
dc.date.issued2021-12-27
dc.identifier.issn2574-0962
dc.identifier.other34977472
dc.identifier.otherPMC8715422
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333587
dc.description.abstractHalide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide. We find that the mixed-halide perovskites show two separate halide migration processes, in contrast to pure-phase perovskites, which show only a unique halide migration component. Compared to pure-halide perovskites, these processes have lower activation energies, facilitating ion migration in mixed versus pure-phase perovskites, and have a higher density of mobile ions. Under illumination, we find that the concentration of mobile halide ions is further increased and notice the emergence of a migration process involving methylammonium cations. Quantifying the ion migration processes in mixed-halide perovskites shines light on the key parameters allowing the design of bandgap-tunable perovskite solar cells with long-term stability.
dc.languageeng
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcenlmid: 101718976
dc.sourceessn: 2574-0962
dc.subjectperovskite
dc.subjection migration
dc.subjectphase segregation
dc.subjectmixed halide
dc.subjecttransient ion drift
dc.subjectactivation energy
dc.subjecthalide
dc.subjectmethylammonium
dc.titleReduced Barrier for Ion Migration in Mixed-Halide Perovskites.
dc.typeArticle
dc.date.updated2022-02-03T01:55:55Z
prism.endingPage13437
prism.issueIdentifier12
prism.publicationNameACS Appl Energy Mater
prism.startingPage13431
prism.volume4
dc.identifier.doi10.17863/CAM.81004
dcterms.dateAccepted2021-12-06
rioxxterms.versionofrecord10.1021/acsaem.1c03095
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.orcidMcGovern, Lucie [0000-0001-7263-5249]
dc.contributor.orcidGrimaldi, Gianluca [0000-0002-2626-9118]
dc.contributor.orcidFutscher, Moritz H [0000-0001-8451-5009]
dc.contributor.orcidHutter, Eline M [0000-0002-5537-6545]
dc.contributor.orcidMuscarella, Loreta A [0000-0002-0559-4085]
dc.contributor.orcidEhrler, Bruno [0000-0002-5307-3241]
dc.identifier.eissn2574-0962
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S030638/1)
cam.issuedOnline2021-12-09


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's licence is described as Attribution-NonCommercial-NoDerivatives 4.0 International