Show simple item record

dc.contributor.authorJacobs, Ian
dc.contributor.authorD'Avino, Gabriele
dc.contributor.authorLemaur, Vincent
dc.contributor.authorLin, Yue
dc.contributor.authorHuang, Yuxuan
dc.contributor.authorChen, Chen
dc.contributor.authorHarrelson, Thomas
dc.contributor.authorWood, William
dc.contributor.authorSpalek, Leszek J
dc.contributor.authorMustafa, Tarig
dc.contributor.authorO'Keefe, Christopher A
dc.contributor.authorRen, Xinglong
dc.contributor.authorSimatos, Dimitrios
dc.contributor.authorTjhe, Dion
dc.contributor.authorStatz, Martin
dc.contributor.authorStrzalka, Joseph
dc.contributor.authorLee, Jin-Kyun
dc.contributor.authorMcCulloch, Iain
dc.contributor.authorFratini, Simone
dc.contributor.authorBeljonne, David
dc.contributor.authorSirringhaus, Henning
dc.date.accessioned2022-02-04T00:30:05Z
dc.date.available2022-02-04T00:30:05Z
dc.date.issued2022-02-23
dc.identifier.issn0002-7863
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333609
dc.description.abstractDoped organic semiconductors are critical to emerging device applications, including thermoelectrics, bioelectronics, and neuromorphic computing devices. It is commonly assumed that low conductivities in these materials result primarily from charge trapping by the Coulomb potentials of the dopant counter-ions. Here, we present a combined experimental and theoretical study rebutting this belief. Using a newly developed doping technique, we find the conductivity of several classes of high-mobility conjugated polymers to be strongly correlated with paracrystalline disorder but poorly correlated with ionic size, suggesting that Coulomb traps do not limit transport. A general model for interacting electrons in highly doped polymers is proposed and carefully parameterized against atomistic calculations, enabling the calculation of electrical conductivity within the framework of transient localisation theory. Theoretical calculations are in excellent agreement with experimental data, providing insights into the disordered-limited nature of charge transport and suggesting new strategies to further improve conductivities.
dc.publisherAmerican Chemical Society
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.subjectcond-mat.mtrl-sci
dc.subjectcond-mat.mtrl-sci
dc.titleStructural and dynamic disorder, not ionic trapping, controls charge transport in highly doped conducting polymers
dc.typeArticle
dc.publisher.departmentDepartment of Physics
dc.date.updated2022-01-05T00:34:36Z
prism.publicationNameJournal of the American Chemical Society
dc.identifier.doi10.17863/CAM.81025
dcterms.dateAccepted2021-12-20
rioxxterms.versionofrecord10.1021/jacs.1c10651
rioxxterms.versionAM
dc.contributor.orcidJacobs, Ian [0000-0002-1535-4608]
dc.contributor.orcidRen, Xinglong [0000-0001-9824-5767]
dc.contributor.orcidSirringhaus, Henning [0000-0001-9827-6061]
dc.identifier.eissn1520-5126
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEuropean Research Council (610115)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L015889/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R031894/1)
cam.issuedOnline2022-02-14
cam.orpheus.successThu Feb 24 18:06:36 GMT 2022 - Embargo updated
cam.depositDate2022-01-05
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2023-02-14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record