Infinite approximate subgroups of soluble Lie groups
Authors
Publication Date
2022-02Journal Title
Mathematische Annalen
ISSN
0025-5831
Publisher
Springer Science and Business Media LLC
Volume
382
Issue
1-2
Pages
285-301
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Machado, S. (2022). Infinite approximate subgroups of soluble Lie groups. Mathematische Annalen, 382 (1-2), 285-301. https://doi.org/10.1007/s00208-021-02258-8
Abstract
<jats:title>Abstract</jats:title><jats:p>We study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer.</jats:p>
Keywords
Article, Approximate lattices, Approximate subgroups, Lie groups, Linear algebraic groups, 05E15, 22E99, 22E40
Sponsorship
EPSRC (2117723)
Identifiers
s00208-021-02258-8, 2258
External DOI: https://doi.org/10.1007/s00208-021-02258-8
This record's URL: https://www.repository.cam.ac.uk/handle/1810/333717
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.