Infinite approximate subgroups of soluble Lie groups
dc.contributor.author | Machado, S | |
dc.date.accessioned | 2022-02-07T16:20:56Z | |
dc.date.available | 2022-02-07T16:20:56Z | |
dc.date.issued | 2022-02 | |
dc.date.submitted | 2019-11-12 | |
dc.identifier.issn | 0025-5831 | |
dc.identifier.other | s00208-021-02258-8 | |
dc.identifier.other | 2258 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/333717 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>We study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer.</jats:p> | |
dc.language | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.subject | Article | |
dc.subject | Approximate lattices | |
dc.subject | Approximate subgroups | |
dc.subject | Lie groups | |
dc.subject | Linear algebraic groups | |
dc.subject | 05E15 | |
dc.subject | 22E99 | |
dc.subject | 22E40 | |
dc.title | Infinite approximate subgroups of soluble Lie groups | |
dc.type | Article | |
dc.date.updated | 2022-02-07T16:20:55Z | |
prism.endingPage | 301 | |
prism.issueIdentifier | 1-2 | |
prism.publicationName | Mathematische Annalen | |
prism.startingPage | 285 | |
prism.volume | 382 | |
dc.identifier.doi | 10.17863/CAM.81134 | |
dcterms.dateAccepted | 2021-08-13 | |
rioxxterms.versionofrecord | 10.1007/s00208-021-02258-8 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.contributor.orcid | Machado, S [0000-0002-1787-6864] | |
dc.identifier.eissn | 1432-1807 | |
pubs.funder-project-id | EPSRC (2117723) | |
cam.issuedOnline | 2021-08-28 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router