Show simple item record

dc.contributor.authorMachado, Simon
dc.date.accessioned2022-02-07T16:20:56Z
dc.date.available2022-02-07T16:20:56Z
dc.date.issued2022-02
dc.date.submitted2019-11-12
dc.identifier.issn0025-5831
dc.identifier.others00208-021-02258-8
dc.identifier.other2258
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333717
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>We study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer.</jats:p>
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subjectApproximate lattices
dc.subjectApproximate subgroups
dc.subjectLie groups
dc.subjectLinear algebraic groups
dc.subject05E15
dc.subject22E99
dc.subject22E40
dc.titleInfinite approximate subgroups of soluble Lie groups
dc.typeArticle
dc.date.updated2022-02-07T16:20:55Z
prism.endingPage301
prism.issueIdentifier1-2
prism.publicationNameMathematische Annalen
prism.startingPage285
prism.volume382
dc.identifier.doi10.17863/CAM.81134
dcterms.dateAccepted2021-08-13
rioxxterms.versionofrecord10.1007/s00208-021-02258-8
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidMachado, Simon [0000-0002-1787-6864]
dc.identifier.eissn1432-1807
pubs.funder-project-idEPSRC (2117723)
cam.issuedOnline2021-08-28


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record