Show simple item record

dc.contributor.authorGripaios, B
dc.contributor.authorHaddadin, W
dc.contributor.authorLester, CG
dc.date.accessioned2022-02-11T09:30:50Z
dc.date.available2022-02-11T09:30:50Z
dc.date.issued2021
dc.date.submitted2020-08-12
dc.identifier.issn1751-8113
dc.identifier.otheraabe58c
dc.identifier.otherabe58c
dc.identifier.otherjphysa-114741.r1
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/333905
dc.description.abstractA theorem of Weyl tells us that the Lorentz (and parity) invariant polynomials in the momenta of $n$ particles are generated by the dot products. We extend this result to include the action of an arbitrary permutation group $P \subset S_n$ on the particles, to take account of the quantum-field-theoretic fact that particles can be indistinguishable. Doing so provides a convenient set of variables for describing scattering processes involving identical particles, such as $pp \to jjj$, for which we provide an explicit set of Lorentz and permutation invariant generators.
dc.languageen
dc.publisherIOP Publishing
dc.subjectmathematical physics
dc.subjectinvariant theory
dc.subjectHironaka decomposition
dc.subjectminimal algebra generators
dc.subjectinvariant polynomial generators
dc.titleLorentz- And permutation-invariants of particles
dc.typeArticle
dc.date.updated2022-02-11T09:30:50Z
prism.issueIdentifier15
prism.publicationNameJournal of Physics A: Mathematical and Theoretical
prism.volume54
dc.identifier.doi10.17863/CAM.81321
dcterms.dateAccepted2021-02-11
rioxxterms.versionofrecord10.1088/1751-8121/abe58c
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidHaddadin, W [0000-0002-1217-4775]
dc.identifier.eissn1751-8121
dc.publisher.urlhttp://dx.doi.org/10.1088/1751-8121/abe58c
pubs.funder-project-idScience and Technology Facilities Council (ST/P000681/1)
pubs.funder-project-idScience and Technology Facilities Council (ST/S505316/1)
pubs.funder-project-idSTFC (ST/T000694/1)
cam.issuedOnline2021-03-22


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record