Show simple item record

dc.contributor.authorChikkaraddy, Rohit
dc.contributor.authorXomalis, Angelos
dc.contributor.authorJakob, Lukas A
dc.contributor.authorBaumberg, Jeremy
dc.date.accessioned2022-02-14T17:00:12Z
dc.date.available2022-02-14T17:00:12Z
dc.date.issued2022-01-19
dc.date.submitted2021-07-12
dc.identifier.issn2095-5545
dc.identifier.others41377-022-00709-8
dc.identifier.other709
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334015
dc.descriptionFunder: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); doi: https://doi.org/10.13039/100011199; Grant(s): 829067
dc.description.abstractRecent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in real time at room temperature. By contrast, mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow detection. Here we develop a new method for MIR sensing using SERS. This method utilizes nanoparticle-on-foil (NPoF) nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer of molecules. Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR photons. The strength of this modulation depends on the MIR wavelength, and is maximized at the 6-12 μm absorption bands of SiO2 or polystyrene placed under the foil. Using a single-photon lock-in detection scheme we time-resolve the rise and decay of the signal in a few 100 ns. Our observations reveal that the phonon resonances of SiO2 can trap intense MIR surface plasmons within the Reststrahlen band, tuning the visible-wavelength localized plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices. This suggests new ways to couple nanoscale bond vibrations for optomechanics, with potential to push detection limits down to single-photon and single-molecule regimes.
dc.description.sponsorshipWe acknowledge support from European Research Council (ERC) under Horizon 2020 research and innovation programme THOR (Grant Agreement No. 829067) and POSEIDON (Grant Agreement No. 861950). We acknowledge funding from the EPSRC (Cambridge NanoDTC EP/L015978/1, EP/L027151/1, EP/S022953/1, EP/P029426/1, and EP/R020965/1). R.C.acknowledges support from Trinity College, University of Cambridge.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subject/639/624/400/1021
dc.subject/639/766/1130/2799
dc.subject/639/624/399/1098
dc.subject/639/624/400/561
dc.subject/639/766/400/3925
dc.subject/123
dc.subject/140/125
dc.subject/140/133
dc.subjectarticle
dc.titleMid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities.
dc.typeArticle
dc.date.updated2022-02-14T17:00:11Z
prism.issueIdentifier1
prism.publicationNameLight Sci Appl
prism.volume11
dc.identifier.doi10.17863/CAM.81427
dcterms.dateAccepted2022-01-05
rioxxterms.versionofrecord10.1038/s41377-022-00709-8
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidChikkaraddy, Rohit [0000-0002-3840-4188]
dc.contributor.orcidXomalis, Angelos [0000-0001-8406-9571]
dc.contributor.orcidBaumberg, Jeremy [0000-0002-9606-9488]
dc.identifier.eissn2047-7538
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L027151/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (829067)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (883703)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L015978/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P029426/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R020965/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S022953/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
cam.issuedOnline2022-01-19


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record