Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi.
Authors
Keyes, Sam
van Veelen, Arjen
Scotson, Callum
Koebernick, Nico
Petroselli, Chiara
Williams, Katherine
Ruiz, Siul
Cooper, Laura
Mayon, Robbie
Duncan, Simon
Dumont, Marc
Jakobsen, Iver
Oldroyd, Giles
Tkacz, Andrzej
Poole, Philip
Mosselmans, Fred
Borca, Camelia
Huthwelker, Thomas
Jones, David L
Publication Date
2022-04Journal Title
New Phytol
ISSN
0028-646X
Publisher
Wiley
Language
en
Type
Article
This Version
AO
VoR
Metadata
Show full item recordCitation
Keyes, S., van Veelen, A., McKay Fletcher, D., Scotson, C., Koebernick, N., Petroselli, C., Williams, K., et al. (2022). Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi.. New Phytol https://doi.org/10.1111/nph.17980
Description
Funder: U.S. Department of Energy through the LANL/LDRD Program
Funder: G. T. Seaborg Institute
Abstract
Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography to visualize mycorrhizas in soil and synchrotron X-ray fluorescence/X-ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co-locate with areas of high P and low Al, and preferentially associate with organic-type P species over Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. Sulphur-rich regions were found to be correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated - a result with significant implications for the modelling of plant-soil-AMF interactions.
Keywords
Full paper, Full papers, mycorrhizas, plant phosphorus uptake, rhizosphere modelling, synchrotron, X‐ray computed tomography, X‐ray fluorescence
Sponsorship
NERC (NE/L00237/1)
H2020 European Research Council (646809‐DIMR)
Biotechnology and Biological Sciences Research Council (BB/L02620/1, BB/L502625/1, BB/P004180/1, BB/N013387/1, BB/R017859/1)
EPSRC (EP/M020355/1)
Identifiers
nph17980, 2021-38297
External DOI: https://doi.org/10.1111/nph.17980
This record's URL: https://www.repository.cam.ac.uk/handle/1810/334055
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.