Show simple item record

dc.contributor.authorSynakewicz, Marie
dc.contributor.authorEapen, Rohan S
dc.contributor.authorPerez-Riba, Albert
dc.contributor.authorRowling, Pamela JE
dc.contributor.authorBauer, Daniela
dc.contributor.authorWeißl, Andreas
dc.contributor.authorFischer, Gerhard
dc.contributor.authorHyvönen, Marko
dc.contributor.authorRief, Matthias
dc.contributor.authorItzhaki, Laura S
dc.contributor.authorStigler, Johannes
dc.date.accessioned2022-02-17T00:30:17Z
dc.date.available2022-02-17T00:30:17Z
dc.date.issued2022-03-22
dc.identifier.issn1936-0851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334125
dc.description.abstractTandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
dc.description.sponsorshipEric Reid Fund for Methodology from the British Biochemical Society AstraZeneca
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.subjectIsing models
dc.subjectoptical tweezers
dc.subjectprotein folding
dc.subjectprotein mechanics
dc.subjectrepeat proteins
dc.subjectProtein Folding
dc.subjectProtein Stability
dc.subjectProtein Structure, Secondary
dc.subjectProteins
dc.subjectThermodynamics
dc.titleUnraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix.
dc.typeArticle
dc.publisher.departmentDepartment of Pharmacology
dc.date.updated2022-02-15T16:54:35Z
prism.publicationNameACS Nano
dc.identifier.doi10.17863/CAM.81535
dcterms.dateAccepted2022-01-27
rioxxterms.versionofrecord10.1021/acsnano.1c09162
rioxxterms.versionAM
dc.contributor.orcidSynakewicz, Marie [0000-0003-0256-2712]
dc.contributor.orcidHyvönen, Marko [0000-0001-8683-4070]
dc.contributor.orcidItzhaki, Laura S [0000-0001-6504-2576]
dc.identifier.eissn1936-086X
rioxxterms.typeJournal Article/Review
cam.issuedOnline2022-03-08
cam.orpheus.successWed Mar 23 10:26:34 GMT 2022 - Embargo updated
cam.orpheus.counter1
cam.depositDate2022-02-15
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2023-03-08


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record