Show simple item record

dc.contributor.authorMoore, Brian
dc.date.accessioned2022-02-19T16:00:35Z
dc.date.available2022-02-19T16:00:35Z
dc.date.issued2022-01
dc.date.submitted2021-11-03
dc.identifier.issn2331-2165
dc.identifier.other10.1177_23312165211072969
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334227
dc.description.abstract<jats:p> Some of the problems experienced by users of hearing aids (HAs) when listening to music are relevant to cochlear implants (CIs). One problem is related to the high peak levels (up to 120 dB SPL) that occur in live music. Some HAs and CIs overload at such levels, because of the limited dynamic range of the microphones and analogue-to-digital converters (ADCs), leading to perceived distortion. Potential solutions are to use 24-bit ADCs or to include an adjustable gain between the microphones and the ADCs. A related problem is how to squeeze the wide dynamic range of music into the limited dynamic range of the user, which can be only 6–20 dB for CI users. In HAs, this is usually done via multi-channel amplitude compression (automatic gain control, AGC). In CIs, a single-channel front-end AGC is applied to the broadband input signal or a control signal derived from a running average of the broadband signal level is used to control the mapping of the channel envelope magnitude to an electrical signal. This introduces several problems: (1) an intense narrowband signal (e.g. a strong bass sound) reduces the level for all frequency components, making some parts of the music harder to hear; (2) the AGC introduces cross-modulation effects that can make a steady sound (e.g. sustained strings or a sung note) appear to fluctuate in level. Potential solutions are to use several frequency channels to create slowly varying gain-control signals and to use slow-acting (or dual time-constant) AGC rather than fast-acting AGC. </jats:p>
dc.languageen
dc.publisherSAGE Publications
dc.subjectPerspective
dc.subjectmusic
dc.subjectdynamic range
dc.subjectautomatic gain control
dc.subjecthearing aids
dc.subjectcochlear implants
dc.subjectcompression speed
dc.titleListening to Music Through Hearing Aids: Potential Lessons for Cochlear Implants
dc.typeArticle
dc.date.updated2022-02-19T16:00:33Z
prism.publicationNameTrends in Hearing
prism.volume26
dc.identifier.doi10.17863/CAM.81640
dcterms.dateAccepted2021-12-21
rioxxterms.versionofrecord10.1177/23312165211072969
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
rioxxterms.licenseref.startdate2022-02-18
dc.contributor.orcidMoore, Brian [0000-0001-7071-0671]
dc.identifier.eissn2331-2165
pubs.funder-project-idMedical Research Council (G0701870)
cam.issuedOnline2022-02-18
rioxxterms.freetoread.startdate2022-02-18
rioxxterms.freetoread.startdate2022-02-18


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record