Why sequence all eukaryotes?
View / Open Files
Authors
Jarvis, Erich D
Lawniczak, Mara KN
Shapiro, Beth
Publication Date
2022-01-25Journal Title
Proc Natl Acad Sci U S A
ISSN
0027-8424
Publisher
Proceedings of the National Academy of Sciences
Volume
119
Issue
4
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Blaxter, M., Archibald, J. M., Childers, A. K., Coddington, J. A., Crandall, K. A., Di Palma, F., Durbin, R., et al. (2022). Why sequence all eukaryotes?. Proc Natl Acad Sci U S A, 119 (4) https://doi.org/10.1073/pnas.2115636118
Abstract
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Keywords
Genome, Ecology, Evolution, Conservation, Diversity
Sponsorship
Wellcome Trust (206194, 206194 , 218328)
Identifiers
PMC8795522, 35042801
External DOI: https://doi.org/10.1073/pnas.2115636118
This record's URL: https://www.repository.cam.ac.uk/handle/1810/334233
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.