Show simple item record

dc.contributor.authorChikkaraddy, Rohit
dc.contributor.authorXomalis, Angelos
dc.contributor.authorJakob, Lukas A
dc.contributor.authorBaumberg, Jeremy J
dc.date.accessioned2022-02-20T02:02:22Z
dc.date.available2022-02-20T02:02:22Z
dc.date.issued2022-01-19
dc.identifier.citationLight, science & applications, volume 11, issue 1, page 19
dc.identifier.issn2095-5545
dc.identifier.otherPMC8766566
dc.identifier.other35042844
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/334237
dc.description.abstractRecent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in real time at room temperature. By contrast, mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow detection. Here we develop a new method for MIR sensing using SERS. This method utilizes nanoparticle-on-foil (NPoF) nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer of molecules. Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR photons. The strength of this modulation depends on the MIR wavelength, and is maximized at the 6-12 μm absorption bands of SiO2 or polystyrene placed under the foil. Using a single-photon lock-in detection scheme we time-resolve the rise and decay of the signal in a few 100 ns. Our observations reveal that the phonon resonances of SiO2 can trap intense MIR surface plasmons within the Reststrahlen band, tuning the visible-wavelength localized plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices. This suggests new ways to couple nanoscale bond vibrations for optomechanics, with potential to push detection limits down to single-photon and single-molecule regimes.
dc.description.sponsorshipWe acknowledge support from European Research Council (ERC) under Horizon 2020 research and innovation programme THOR (Grant Agreement No. 829067) and POSEIDON (Grant Agreement No. 861950). We acknowledge funding from the EPSRC (Cambridge NanoDTC EP/L015978/1, EP/L027151/1, EP/S022953/1, EP/P029426/1, and EP/R020965/1). R.C.acknowledges support from Trinity College, University of Cambridge.
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 101610753
dc.sourceessn: 2047-7538
dc.subjectphysics.optics
dc.subjectphysics.optics
dc.subjectcond-mat.mes-hall
dc.subjectphysics.app-ph
dc.titleMid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities.
dc.typeArticle
dc.date.updated2022-02-20T02:02:21Z
prism.publicationNameLight Sci Appl
dc.identifier.doi10.17863/CAM.81650
dcterms.dateAccepted2022-01-05
rioxxterms.versionofrecord10.1038/s41377-022-00709-8
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidChikkaraddy, Rohit [0000-0002-3840-4188]
dc.contributor.orcidXomalis, Angelos [0000-0001-8406-9571]
dc.contributor.orcidBaumberg, Jeremy J [0000-0002-9606-9488]
dc.identifier.eissn2047-7538
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L027151/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (829067)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (883703)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L015978/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P029426/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R020965/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S022953/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
pubs.funder-project-idEngineering and Physical Sciences Research Council (2275079)
cam.issuedOnline2022-01-19
datacite.issupplementedby.urlhttps://doi.org/10.17863/CAM.79290


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International