Diophantine approximation as Cosmic Censor for Kerr–AdS black holes
Authors
Kehle, Christoph
Publication Date
2022-03Journal Title
Inventiones mathematicae
ISSN
0020-9910
Publisher
Springer Science and Business Media LLC
Volume
227
Issue
3
Pages
1169-1321
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Kehle, C. (2022). Diophantine approximation as Cosmic Censor for Kerr–AdS black holes. Inventiones mathematicae, 227 (3), 1169-1321. https://doi.org/10.1007/s00222-021-01078-6
Abstract
<jats:title>Abstract</jats:title><jats:p>The purpose of this paper is to show an unexpected connection between Diophantine approximation and the behavior of waves on black hole interiors with negative cosmological constant <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda <0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Λ</mml:mi>
<mml:mo><</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and explore the consequences of this for the Strong Cosmic Censorship conjecture in general relativity. We study linear scalar perturbations <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ψ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> of Kerr–AdS solving <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Box _g\psi -\frac{2}{3}\Lambda \psi =0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mo>□</mml:mo>
<mml:mi>g</mml:mi>
</mml:msub>
<mml:mi>ψ</mml:mi>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mn>2</mml:mn>
<mml:mn>3</mml:mn>
</mml:mfrac>
<mml:mi>Λ</mml:mi>
<mml:mi>ψ</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> with reflecting boundary conditions imposed at infinity. Understanding the behavior of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ψ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> at the Cauchy horizon corresponds to a linear analog of the problem of Strong Cosmic Censorship. Our main result shows that if the dimensionless black hole parameters mass <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}} = M \sqrt{-\Lambda }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>m</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>M</mml:mi>
<mml:msqrt>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mi>Λ</mml:mi>
</mml:mrow>
</mml:msqrt>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and angular momentum <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {a}} = a \sqrt{-\Lambda }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>a</mml:mi>
<mml:msqrt>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mi>Λ</mml:mi>
</mml:mrow>
</mml:msqrt>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> satisfy a certain non-Diophantine condition, then perturbations <jats:inline-formula><jats:alternatives><jats:tex-math>$$\psi $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ψ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> arising from generic smooth initial data blow up <jats:inline-formula><jats:alternatives><jats:tex-math>$$|\psi |\rightarrow +\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>ψ</mml:mi>
<mml:mo>|</mml:mo>
<mml:mo>→</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>∞</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> at the Cauchy horizon. The proof crucially relies on a novel resonance phenomenon between stable trapping on the black hole exterior and the poles of the interior scattering operator that gives rise to a small divisors problem. Our result is in stark contrast to the result on Reissner–Nordström–AdS (Kehle in Commun Math Phys 376(1):145–200, 2020) as well as to previous work on the analogous problem for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda \ge 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Λ</mml:mi>
<mml:mo>≥</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>—in both cases such linear scalar perturbations were shown to remain bounded. As a result of the non-Diophantine condition, the set of parameters <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}}, {\mathfrak {a}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for which we show blow-up forms a Baire-generic but Lebesgue-exceptional subset of all parameters below the Hawking–Reall bound. On the other hand, we conjecture that for a set of parameters <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {m}}, {\mathfrak {a}} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> which is Baire-exceptional but Lebesgue-generic, all linear scalar perturbations remain bounded at the Cauchy horizon <jats:inline-formula><jats:alternatives><jats:tex-math>$$|\psi |\le C$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>ψ</mml:mi>
<mml:mo>|</mml:mo>
<mml:mo>≤</mml:mo>
<mml:mi>C</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. This suggests that the validity of the <jats:inline-formula><jats:alternatives><jats:tex-math>$$C^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>C</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>-formulation of Strong Cosmic Censorship for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Lambda <0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Λ</mml:mi>
<mml:mo><</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> may change in a spectacular way according to the notion of genericity imposed.</jats:p>
Keywords
Article
Identifiers
s00222-021-01078-6, 1078
External DOI: https://doi.org/10.1007/s00222-021-01078-6
This record's URL: https://www.repository.cam.ac.uk/handle/1810/334323
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk