Repository logo
 

Dynamics of deep-submarine volcanic eruptions

Published version
Peer-reviewed

Change log

Authors

Woods, Andrew 

Abstract

Deposits from explosive submarine eruptions have been found in the deep sea, 1-4 km below the surface, with both flow and fall deposits extending several km’s over the seafloor. A model of a turbulent fountain suggests that after rising 10-20 m above the vent, the erupting particle-laden mixture entrains and mixes with sufficient seawater that it becomes denser than seawater. The momentum of the resulting negatively buoyant fountain is only sufficient to carry the material 50-200 m above the seafloor and much of the solid material then collapses to the seafloor; this will not produce the far-reaching fall deposits observed on the seabed. However, new laboratory experiments show that particle sedimentation at the top of the fountain enables some of the hot, buoyant water in the fountain to separate from the collapsing flow and continue rising as a buoyant plume until it forms a radially spreading intrusion higher in the water column. With eruption rates of 106-107 kgs−1, we estimate that this warm water may rise a few 100’s m above the fountain. Some of the finer grained pyroclasts can be carried upwards by this flow and as they spread out in the radial intrusion, they gradually sediment to form a fall deposit which may extend 1000’s m from the source. Meanwhile, material collapsing from the dense fountain forms aqueous pyroclastic flows which may also spread 1000’s m from the vent forming a flow deposit on the seabed. Quantification of the controls on the concurrent fall and flow deposits, and comparison with field observations, including from the 2012 eruption of Havre Volcano in the South Pacific, open the way to new understanding of submarine eruptions.

Description

Funder: Natural Environment Research Council; doi: http://dx.doi.org/10.13039/501100000270

Keywords

37 Earth Sciences, 3703 Geochemistry, 3705 Geology, 3706 Geophysics

Journal Title

Scientific Reports

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

12

Publisher

Nature Publishing Group
Sponsorship
Natural Environment Research Council (2261860)