Repository logo
 

Kernel charge equilibration: Efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model

Published version
Peer-reviewed

Change log

Authors

Staacke, CG 
Wengert, S 
Kunkel, C 
Csányi, G 
Reuter, K 

Abstract

jats:titleAbstract</jats:title> jats:pState-of-the-art machine learning (ML) interatomic potentials use local representations of atomic environments to ensure linear scaling and size-extensivity. This implies a neglect of long-range interactions, most prominently related to electrostatics. To overcome this limitation, we herein present a ML framework for predicting charge distributions and their interactions termed kernel charge equilibration (kQEq). This model is based on classical charge equilibration (QEq) models expanded with an environment-dependent electronegativity. In contrast to previously reported neural network models with a similar concept, kQEq takes advantage of the linearity of both QEq and Kernel Ridge Regression to obtain a closed-form linear algebra expression for training the models. Furthermore, we avoid the ambiguity of charge partitioning schemes by using dipole moments as reference data. As a first application, we show that kQEq can be used to generate accurate and highly data-efficient models for molecular dipole moments.</jats:p>

Description

Keywords

kernel, charge equilibration, partial charges, dipole moment

Journal Title

Machine Learning: Science and Technology

Conference Name

Journal ISSN

2632-2153
2632-2153

Volume Title

3

Publisher

IOP Publishing
Sponsorship
Deutsche Forschungsgemeinschaft (EXC 2089/1-390776260, RE1509/18-2)