Null Kähler Geometry and Isomonodromic Deformations
dc.contributor.author | Dunajski, M | |
dc.date.accessioned | 2022-03-14T16:07:49Z | |
dc.date.available | 2022-03-14T16:07:49Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2021-09-16 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.other | s00220-021-04270-0 | |
dc.identifier.other | 4270 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/334964 | |
dc.description.abstract | We construct the normal forms of null-K\"ahler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified setting) appear in the Bridgeland stability conditions of the moduli spaces of Calabi-Yau three-folds. Using twistor methods we show that, in dimension four - where there is a connection with dispersionless integrability - the cohomogeneity-one anti-self-dual null-K\"ahler metrics are generically characterised by solutions to Painlev\'e I or Painlev\'e II ODEs. | |
dc.language | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.subject | math.DG | |
dc.subject | math.DG | |
dc.subject | gr-qc | |
dc.subject | hep-th | |
dc.subject | nlin.SI | |
dc.title | Null Kähler Geometry and Isomonodromic Deformations | |
dc.type | Article | |
dc.date.updated | 2022-03-14T16:07:48Z | |
prism.endingPage | 105 | |
prism.issueIdentifier | 1 | |
prism.publicationName | Communications in Mathematical Physics | |
prism.startingPage | 77 | |
prism.volume | 391 | |
dc.identifier.doi | 10.17863/CAM.82402 | |
dcterms.dateAccepted | 2021-11-04 | |
rioxxterms.versionofrecord | 10.1007/s00220-021-04270-0 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.identifier.eissn | 1432-0916 | |
dc.publisher.url | http://dx.doi.org/10.1007/s00220-021-04270-0 | |
cam.issuedOnline | 2021-12-08 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router