Show simple item record

dc.contributor.authorGiannelli, Eugenio
dc.contributor.authorLaw, Stacey
dc.contributor.authorLong, Jason
dc.contributor.authorVallejo, Carolina
dc.date.accessioned2022-03-15T09:00:36Z
dc.date.available2022-03-15T09:00:36Z
dc.date.issued2022-04
dc.date.submitted2021-02-05
dc.identifier.issn0024-6093
dc.identifier.otherblms12584
dc.identifier.other2102.06784
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335001
dc.descriptionFunder: Emmanuel College, Cambridge
dc.description.abstractWe prove that a finite group $G$ has a normal Sylow $p$-subgroup $P$ if, and only if, every irreducible character of $G$ appearing in the permutation character $({\bf 1}_P)^G$ with multiplicity coprime to $p$ has degree coprime to $p$. This confirms a prediction by Malle and Navarro from 2012. Our proof of the above result depends on a reduction to simple groups and ultimately on a combinatorial analysis of the properties of Sylow branching coefficients for symmetric groups.
dc.languageen
dc.publisherWiley
dc.subject20C15
dc.subject20C20
dc.subject20C30
dc.subject20C33
dc.subjectRESEARCH ARTICLE
dc.subjectRESEARCH ARTICLES
dc.titleSylow branching coefficients and a conjecture of Malle and Navarro
dc.typeArticle
dc.date.updated2022-03-15T09:00:35Z
prism.publicationNameBulletin of the London Mathematical Society
dc.identifier.doi10.17863/CAM.82439
dcterms.dateAccepted2021-07-05
rioxxterms.versionofrecord10.1112/blms.12584
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.contributor.orcidLaw, Stacey [0000-0001-7936-0938]
dc.identifier.eissn1469-2120
pubs.funder-project-idSpanish National Research Council (20205CEX001)
pubs.funder-project-idERC (647678)
pubs.funder-project-idMinisterio de Ciencia e Innovación (PID2019‐103854GB‐I00, PID2020‐118193GA‐I00)
cam.issuedOnline2022-03-14


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record