Show simple item record

dc.contributor.authorGowers, WT
dc.contributor.authorJanzer, Barnabas
dc.date.accessioned2022-03-18T00:30:06Z
dc.date.available2022-03-18T00:30:06Z
dc.date.issued2021
dc.identifier.issn0963-5483
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335136
dc.description.abstractonsidering a natural generalization of the Ruzsa–Szemerédi problem, we prove that for any fixed positive integers r, s with r < s, there are graphs on n vertices containing copies of Ks such that any Kr is contained in at most one Ks. We also give bounds for the generalized rainbow Turán problem ex (n, H, rainbow - F) when F is complete. In particular, we answer a question of Gerbner, Mészáros, Methuku and Palmer, showing that there are properly edge-coloured graphs on n vertices with copies of Kr such that no Kr is rainbow.
dc.publisherCambridge University Press
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectmath.CO
dc.subjectmath.CO
dc.titleGeneralizations of the Ruzsa-Szemeredi and rainbow Turan problems for cliques
dc.typeArticle
dc.publisher.departmentDepartment of Pure Mathematics And Mathematical Statistics
dc.date.updated2022-03-11T23:39:38Z
prism.endingPage608
prism.issueIdentifier4
prism.publicationDate2021
prism.publicationNameCombinatorics, Probability and Computing
prism.startingPage591
prism.volume30
dc.identifier.doi10.17863/CAM.82568
dcterms.dateAccepted2021-09-05
rioxxterms.versionofrecord10.1017/S0963548320000589
rioxxterms.versionVoR
dc.contributor.orcidGowers, William [0000-0002-5168-0785]
dc.identifier.eissn1469-2163
rioxxterms.typeJournal Article/Review
pubs.funder-project-idRoyal Society (RP/EA/180019)
pubs.funder-project-idEngineering and Physical Sciences Research Council (2261055)
cam.issuedOnline2021-11-19
cam.depositDate2022-03-11
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International