Show simple item record

dc.contributor.authorBeardon, AF
dc.date.accessioned2022-03-29T15:00:25Z
dc.date.available2022-03-29T15:00:25Z
dc.date.issued2022-03
dc.date.submitted2019-12-23
dc.identifier.issn1617-9447
dc.identifier.others40315-021-00369-6
dc.identifier.other369
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335472
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The positive solutions of the equation <jats:inline-formula><jats:alternatives><jats:tex-math>$$x^y = y^x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>x</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation <jats:inline-formula><jats:alternatives><jats:tex-math>$$x^y=y^x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>x</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, the complex equation <jats:inline-formula><jats:alternatives><jats:tex-math>$$z^w = w^z$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>w</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>w</mml:mi> <mml:mi>z</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair <jats:italic>z</jats:italic>(<jats:italic>t</jats:italic>) and <jats:italic>w</jats:italic>(<jats:italic>t</jats:italic>) of functions of a complex variable <jats:italic>t</jats:italic> that are holomorphic functions of <jats:italic>t</jats:italic> lying in some region <jats:italic>D</jats:italic> of the complex plane that satisfy the equation <jats:inline-formula><jats:alternatives><jats:tex-math>$$z(t)^{w(t)} = w(t)^{z(t)}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>z</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>w</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for <jats:italic>t</jats:italic> in <jats:italic>D</jats:italic>. Moreover, when <jats:italic>t</jats:italic> is positive these solutions agree with those of <jats:inline-formula><jats:alternatives><jats:tex-math>$$x^y=y^x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>y</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>x</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>.</jats:p>
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subjectUniformisation
dc.subjectComplex exponents
dc.subjectLambert function
dc.subject30D05
dc.subject30F10
dc.titleThe Uniformisation of the Equation $$z^w=w^z$$
dc.typeArticle
dc.date.updated2022-03-29T15:00:24Z
prism.endingPage134
prism.issueIdentifier1
prism.publicationNameComputational Methods and Function Theory
prism.startingPage123
prism.volume22
dc.identifier.doi10.17863/CAM.82903
dcterms.dateAccepted2020-12-21
rioxxterms.versionofrecord10.1007/s40315-021-00369-6
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.identifier.eissn2195-3724
cam.issuedOnline2021-07-26


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record