Show simple item record

dc.contributor.authorFeng, Oliver Y
dc.contributor.authorVenkataramanan, Ramji
dc.contributor.authorRush, Cynthia
dc.contributor.authorSamworth, Richard J
dc.date.accessioned2022-03-29T23:30:06Z
dc.date.available2022-03-29T23:30:06Z
dc.date.issued2022
dc.identifier.issn1935-8237
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335480
dc.description.abstractOver the last decade or so, Approximate Message Passing (AMP) algorithms have become extremely popular in various structured high-dimensional statistical problems. The fact that the origins of these techniques can be traced back to notions of belief propagation in the statistical physics literature lends a certain mystique to the area for many statisticians. Our goal in this work is to present the main ideas of AMP from a statistical perspective, to illustrate the power and flexibility of the AMP framework. Along the way, we strengthen and unify many of the results in the existing literature.
dc.publisherNow Publishers
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.subjectcs.IT
dc.subjectmath.IT
dc.subjectmath.ST
dc.subjectmath.ST
dc.subjectstat.ML
dc.subjectstat.TH
dc.titleA Unifying Tutorial on Approximate Message Passing
dc.typeArticle
dc.publisher.departmentDepartment of Engineering
dc.publisher.departmentDepartment of Pure Mathematics And Mathematical Statistics
dc.date.updated2022-03-26T14:18:33Z
prism.publicationNameFOUNDATIONS AND TRENDS IN MACHINE LEARNING
prism.volumeabs/2105.02180
dc.identifier.doi10.17863/CAM.82911
dcterms.dateAccepted2022-03-23
rioxxterms.versionofrecord10.1561/2200000092
rioxxterms.versionAM
dc.contributor.orcidVenkataramanan, Ramji [0000-0001-7915-5432]
dc.contributor.orcidSamworth, Richard [0000-0003-2426-4679]
dc.identifier.eissn1935-8245
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/N031938/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P031447/1)
pubs.funder-project-idAlan Turing Institute (Unknown)
cam.issuedOnline2022
cam.orpheus.successTue Apr 12 08:22:52 BST 2022 - Embargo updated
cam.depositDate2022-03-26
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2022-11-30


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record