Show simple item record

dc.contributor.authorMiele, Ermanno
dc.contributor.authorDose, Wesley
dc.contributor.authorManyakin, Ilya
dc.contributor.authorFrosz, Michael
dc.contributor.authorRuff, Zachary
dc.contributor.authorDe Volder, Michael
dc.contributor.authorGrey, Clare
dc.contributor.authorBaumberg, Jeremy
dc.contributor.authorEuser, Tijmen
dc.date.accessioned2022-03-31T16:27:54Z
dc.date.available2022-03-31T16:27:54Z
dc.date.issued2022-03-28
dc.date.submitted2021-05-16
dc.identifier.issn2041-1723
dc.identifier.others41467-022-29330-4
dc.identifier.other29330
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335561
dc.descriptionFunder: Faraday Institution, grant reference: FIRG001
dc.descriptionFunder: Faraday Institution, grant reference: FIRG001 Winton Programme for the Physics of Sustainability (Cambridge University)
dc.description.abstractImproved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.
dc.description.sponsorshipThis work is supported by the Faraday Institution under grant no. FIRG001 (EM, WMD, ZR, MDV, CPG, JJB, TGE) and the Winton Programme for the Physics of Sustainability (EM, TGE).
dc.languageen
dc.publisherNature Research
dc.subjectArticle
dc.subject/639/624/1107/527/1821
dc.subject/639/4077/4079/891
dc.subject/639/624/1075/187
dc.subject/639/301/930
dc.subject/639/4077/4079
dc.subject/140/133
dc.subject/120
dc.subject/128
dc.subjectarticle
dc.titleHollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes
dc.typeArticle
dc.date.updated2022-03-31T16:27:53Z
prism.issueIdentifier1
prism.publicationNameNature Communications
prism.volume13
dc.identifier.doi10.17863/CAM.82992
dcterms.dateAccepted2022-03-04
rioxxterms.versionofrecord10.1038/s41467-022-29330-4
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidDe Volder, Michael [0000-0003-1955-2270]
dc.contributor.orcidGrey, Clare [0000-0001-5572-192X]
dc.contributor.orcidBaumberg, Jeremy [0000-0002-9606-9488]
dc.contributor.orcidEuser, Tijmen [0000-0002-8305-9598]
dc.identifier.eissn2041-1723
cam.issuedOnline2022-03-28


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record