Show simple item record

dc.contributor.authorKasianova, Ksenia
dc.contributor.authorKelbert, Mark
dc.contributor.authorMozgunov, Pavel
dc.date.accessioned2022-04-05T23:30:40Z
dc.date.available2022-04-05T23:30:40Z
dc.date.issued2021-06
dc.identifier.issn0167-9473
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335810
dc.description.abstractIn many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them are needed. Recently, it was argued that response-adaptive designs such as families of multi-arm bandit (MAB) methods could provide the means for achieving this balance. Furthermore, response-adaptive designs based on a concept of context-dependent (weighted) information criteria were recently proposed with a focus on Shannon's differential entropy. The information-theoretic designs based on the weighted Renyi, Tsallis and Fisher informations are also proposed. Due to built-in parameters of these novel designs, the balance between the statistical power and the number of patients that respond to the treatment can be tuned explicitly. The asymptotic properties of these measures are studied in order to construct intuitive criteria for arm selection. A comprehensive simulation study shows that using the exact criteria over asymptotic ones or using information measures with more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms of the power or proportion of patients allocated to superior treatments. The proposed designs based on information-theoretical criteria are compared to several alternative approaches. For example, via tuning of the built-in parameter, one can find designs with power comparable to the fixed equal randomisation's but a greater number of patients responded in the trials.
dc.publisherElsevier
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectExperimental design
dc.subjectInformation gain
dc.subjectPhase II clinical trial
dc.subjectSmall population trials
dc.subjectWeighted information
dc.titleResponse adaptive designs for Phase II trials with binary endpoint based on context-dependent information measures.
dc.typeArticle
dc.publisher.departmentMrc Biostatistics Unit
dc.date.updated2022-04-05T12:30:32Z
prism.endingPage107187
prism.number107187
prism.publicationDate2021
prism.publicationNameComputational Statistics and Data Analysis
prism.startingPage107187
prism.volume158
dc.identifier.doi10.17863/CAM.83246
dcterms.dateAccepted2021-01-22
rioxxterms.versionofrecord10.1016/j.csda.2021.107187
rioxxterms.versionVoR
dc.contributor.orcidKelbert, Mark [0000-0002-3952-2012]
dc.identifier.eissn1872-7352
rioxxterms.typeJournal Article/Review
pubs.funder-project-idDepartment of Health (via National Institute for Health Research (NIHR)) (NIHR300576)
cam.issuedOnline2021-01-30
cam.depositDate2022-04-05
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International