Show simple item record

dc.contributor.authorChen, LuLu
dc.contributor.authorAdeyemo, Stephanie O
dc.contributor.authorFonseka, H Aruni
dc.contributor.authorLiu, Huiyun
dc.contributor.authorKar, Srabani
dc.contributor.authorYang, Hui
dc.contributor.authorVelichko, Anton
dc.contributor.authorMowbray, David J
dc.contributor.authorCheng, Zhiyuan
dc.contributor.authorSanchez, Ana M
dc.contributor.authorJoyce, Hannah J
dc.contributor.authorZhang, Yunyan
dc.date.accessioned2022-05-16T01:02:36Z
dc.date.available2022-05-16T01:02:36Z
dc.date.issued2022-04-27
dc.identifier.issn1530-6984
dc.identifier.other35420433
dc.identifier.otherPMC9097579
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/337181
dc.descriptionFunder: Leverhulme Trust
dc.description.abstractThe influence of nanowire (NW) surface states increases rapidly with the reduction of diameter and hence severely degrades the optoelectronic performance of narrow-diameter NWs. Surface passivation is therefore critical, but it is challenging to achieve long-term effective passivation without significantly affecting other qualities. Here, we demonstrate that an ultrathin InP passivation layer of 2-3 nm can effectively solve these challenges. For InAsP nanowires with small diameters of 30-40 nm, the ultrathin passivation layer reduces the surface recombination velocity by at least 70% and increases the charge carrier lifetime by a factor of 3. These improvements are maintained even after storing the samples in ambient atmosphere for over 3 years. This passivation also greatly improves the performance thermal tolerance of these thin NWs and extends their operating temperature from <150 K to room temperature. This study provides a new route toward high-performance room-temperature narrow-diameter NW devices with long-term stability.
dc.languageeng
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 101088070
dc.sourceessn: 1530-6992
dc.subjectSurface Passivation
dc.subjectLong-term Stability
dc.subjectPhotonic Properties
dc.subjectUltrathin Inp
dc.subjectThin Nanowire
dc.titleLong-Term Stability and Optoelectronic Performance Enhancement of InAsP Nanowires with an Ultrathin InP Passivation Layer.
dc.typeArticle
dc.date.updated2022-05-16T01:02:36Z
prism.endingPage3439
prism.issueIdentifier8
prism.publicationNameNano Lett
prism.startingPage3433
prism.volume22
dc.identifier.doi10.17863/CAM.84600
rioxxterms.versionofrecord10.1021/acs.nanolett.2c00805
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidFonseka, H Aruni [0000-0003-3410-6981]
dc.contributor.orcidMowbray, David J [0000-0002-7673-6837]
dc.contributor.orcidCheng, Zhiyuan [0000-0002-5603-968X]
dc.contributor.orcidSanchez, Ana M [0000-0002-8230-6059]
dc.contributor.orcidZhang, Yunyan [0000-0002-2196-7291]
dc.identifier.eissn1530-6992
pubs.funder-project-idEuropean Research Council (716471)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P000916/1, EP/P006973/1, EP/P000886/1)
cam.issuedOnline2022-04-14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International