Ion migration drives self-passivation in perovskite solar cells and is enhanced by light soaking.
View / Open Files
Authors
Publication Date
2021-03-25Journal Title
RSC advances
ISSN
2046-2069
Volume
11
Issue
20
Pages
12095-12101
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Roose, B. (2021). Ion migration drives self-passivation in perovskite solar cells and is enhanced by light soaking.. RSC advances, 11 (20), 12095-12101. https://doi.org/10.1039/d1ra01166a
Abstract
Perovskite solar cells have rapidly become the most promising emerging photovoltaic technology. This is largely due to excellent self-passivating properties of the perovskite absorber material, allowing for a remarkable ease of fabrication. However, the field is plagued by poor reproducibility and conflicting results. This study finds that dynamic processes (ion migration) taking place after fabrication (without external stimuli) have a large influence on materials properties and need to be controlled to achieve reproducible results. The morphological and optoelectronic properties of triple cation perovskites with varying halide ratios are studied as they evolve over time. It is found that ion migration is essential for self-passivation, but can be impeded by low ion mobility or a low number of mobile species. Restricted ion movement can lead to crack formation in strained films, with disastrous consequences for device performance. However, a short light soaking treatment after fabrication helps to mobilize ions and achieve self-passivation regardless of composition. The community should adopt this treatment as standard practice to increase device performance and reproducibility.
Identifiers
35423767, PMC8696990
External DOI: https://doi.org/10.1039/d1ra01166a
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337227
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.