Highly Oriented Direct-Spun Carbon Nanotube Textiles Aligned by In Situ Radio-Frequency Fields.
View / Open Files
Authors
Kloza, Philipp A
Terrones Portas, Jeronimo
Collins, Brian
Pick, Martin
Publication Date
2022-06-28Journal Title
ACS Nano
ISSN
1936-0851
Publisher
American Chemical Society (ACS)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Issman, L., Kloza, P. A., Terrones Portas, J., Collins, B., Pendashteh, A., Pick, M., Vilatela, J. J., et al. (2022). Highly Oriented Direct-Spun Carbon Nanotube Textiles Aligned by In Situ Radio-Frequency Fields.. ACS Nano https://doi.org/10.1021/acsnano.2c02875
Abstract
Carbon nanotubes (CNTs) individually exhibit exceptional physical properties, surpassing state-of-the-art bulk materials, but are used commercially primarily as additives rather than as a standalone macroscopic product. This limited use of bulk CNT materials results from the inability to harness the superb nanoscale properties of individual CNTs into macroscopic materials. CNT alignment within a textile has been proven as a critical contributor to narrow this gap. Here, we report the development of an altered direct CNT spinning method based on the floating catalyst chemical vapor deposition process, which directly interacts with the self-assembly of the CNT bundles in the gas phase. The setup is designed to apply an AC electric field to continuously align the CNTs in situ during the formation of CNT bundles and subsequent aerogel. A mesoscale CNT model developed to simulate the alignment process has shed light on the need to employ AC rather than DC fields based on a CNT stiffening effect (z-pinch) induced by a Lorentz force. The AC-aligned synthesis enables a means to control CNT bundle diameters, which broadened from 16 to 25 nm. The resulting bulk CNT textiles demonstrated an increase in the specific electrical and tensile properties (up to 90 and 460%, respectively) without modifying the quantity or quality of the CNTs, as verified by thermogravimetric analysis and Raman spectroscopy, respectively. The enhanced properties were correlated to the degree of CNT alignment within the textile as quantified by small-angle X-ray scattering and scanning electron microscopy image analysis. Clear alignment (orientational order parameter = 0.5) was achieved relative to the pristine material (orientational order parameter = 0.19) at applied field intensities in the range of 0.5-1 kV cm-1 at a frequency of 13.56 MHz.
Keywords
Lorentz force, aerosols, alignment, carbon nanotubes, high voltage, radio frequency
Sponsorship
We gratefully acknowledge
funding provided through
the UK government’s modern industrial strategy by Innovate
UK, part of UK Research and Innovation, and from the EPSRC project
“Advanced Nanotube Application and Manufacturing Initiative
under Grant No. EP/M015211/1.
Funder references
Engineering and Physical Sciences Research Council (EP/M015211/1)
EPSRC (EP/M015211/1)
Engineering and Physical Sciences Research Council (EP/L015552/1)
Embargo Lift Date
2023-05-31
Identifiers
External DOI: https://doi.org/10.1021/acsnano.2c02875
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337406
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk