Ab Initio Wavefunction Analysis of Electron Removal Quasi-Particle State of NdNiO<inf>2</inf> With Fully Correlated Quantum Chemical Methods
Authors
Katukuri, VM
Bogdanov, NA
Alavi, A
Publication Date
2022Journal Title
Frontiers in Physics
ISSN
2296-424X
Publisher
Frontiers Media SA
Volume
10
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Katukuri, V., Bogdanov, N., & Alavi, A. (2022). Ab Initio Wavefunction Analysis of Electron Removal Quasi-Particle State of NdNiO<inf>2</inf> With Fully Correlated Quantum Chemical Methods. Frontiers in Physics, 10 https://doi.org/10.3389/fphy.2022.836784
Abstract
<jats:p>The discovery of superconductivity in hole-doped infinite-layer NdNiO<jats:sub>2</jats:sub> — a transition metal (TM) oxide that is both isostructural and isoelectronic to cuprate superconductors—has lead to renewed enthusiasm in the hope of understanding the origin of unconventional superconductivity. Here, we investigate the electron-removal states in infinite-layered Ni<jats:sup>1+</jats:sup> oxide, NdNiO<jats:sub>2</jats:sub>, which mimics hole doping, with the state-of-the-art many-body multireference quantum chemistry methods. From the analysis of the many-body wavefunction we find that the hole-doped <jats:italic>d</jats:italic><jats:sup>8</jats:sup> ground state of NdNiO<jats:sub>2</jats:sub> is very different from the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> ground state in isostructural cuprate analog CaCuO<jats:sub>2</jats:sub>, although the parent <jats:italic>d</jats:italic><jats:sup>9</jats:sup> ground states are for the most part identical. We show that the doped hole in NdNiO<jats:sub>2</jats:sub> mainly localizes on the Ni 3<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math></jats:inline-formula> orbital to form a closed-shell singlet, and this singlet configuration contributes to ∼40% of the wavefunction. In contrast, in CaCuO<jats:sub>2</jats:sub> the Zhang-Rice singlet configurations contribute to ∼65% of the wavefunction. With the help of the quantum information concept of entanglement entropy, we quantify the different types of electronic correlations in the nickelate and cuprate compounds, and find that the dynamic radial-type correlations within the Ni <jats:italic>d</jats:italic> manifold are persistent in hole-doped NdNiO<jats:sub>2</jats:sub>. As a result, the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> multiplet effects are stronger and the additional hole foot-print is more three-dimensional in NdNiO<jats:sub>2</jats:sub>. Our analysis shows that the most commonly used three-band Hubbard model employed to express the doped scenario in cuprates represents ∼90% of the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> wavefunction for CaCuO<jats:sub>2</jats:sub>, but such a model grossly approximates the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> wavefunction for NdNiO<jats:sub>2</jats:sub> as it only stands for ∼60% of the wavefunction.</jats:p>
Keywords
nickelates, superconductors, wavefunction quantum chemistry, doped-holes, ab initio
Identifiers
836784
External DOI: https://doi.org/10.3389/fphy.2022.836784
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337462
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk