Ab Initio Wavefunction Analysis of Electron Removal Quasi-Particle State of NdNiO<inf>2</inf> With Fully Correlated Quantum Chemical Methods
dc.contributor.author | Katukuri, VM | |
dc.contributor.author | Bogdanov, NA | |
dc.contributor.author | Alavi, A | |
dc.date.accessioned | 2022-05-25T13:00:20Z | |
dc.date.available | 2022-05-25T13:00:20Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2021-12-15 | |
dc.identifier.issn | 2296-424X | |
dc.identifier.other | 836784 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/337462 | |
dc.description.abstract | <jats:p>The discovery of superconductivity in hole-doped infinite-layer NdNiO<jats:sub>2</jats:sub> — a transition metal (TM) oxide that is both isostructural and isoelectronic to cuprate superconductors—has lead to renewed enthusiasm in the hope of understanding the origin of unconventional superconductivity. Here, we investigate the electron-removal states in infinite-layered Ni<jats:sup>1+</jats:sup> oxide, NdNiO<jats:sub>2</jats:sub>, which mimics hole doping, with the state-of-the-art many-body multireference quantum chemistry methods. From the analysis of the many-body wavefunction we find that the hole-doped <jats:italic>d</jats:italic><jats:sup>8</jats:sup> ground state of NdNiO<jats:sub>2</jats:sub> is very different from the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> ground state in isostructural cuprate analog CaCuO<jats:sub>2</jats:sub>, although the parent <jats:italic>d</jats:italic><jats:sup>9</jats:sup> ground states are for the most part identical. We show that the doped hole in NdNiO<jats:sub>2</jats:sub> mainly localizes on the Ni 3<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math></jats:inline-formula> orbital to form a closed-shell singlet, and this singlet configuration contributes to ∼40% of the wavefunction. In contrast, in CaCuO<jats:sub>2</jats:sub> the Zhang-Rice singlet configurations contribute to ∼65% of the wavefunction. With the help of the quantum information concept of entanglement entropy, we quantify the different types of electronic correlations in the nickelate and cuprate compounds, and find that the dynamic radial-type correlations within the Ni <jats:italic>d</jats:italic> manifold are persistent in hole-doped NdNiO<jats:sub>2</jats:sub>. As a result, the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> multiplet effects are stronger and the additional hole foot-print is more three-dimensional in NdNiO<jats:sub>2</jats:sub>. Our analysis shows that the most commonly used three-band Hubbard model employed to express the doped scenario in cuprates represents ∼90% of the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> wavefunction for CaCuO<jats:sub>2</jats:sub>, but such a model grossly approximates the <jats:italic>d</jats:italic><jats:sup>8</jats:sup> wavefunction for NdNiO<jats:sub>2</jats:sub> as it only stands for ∼60% of the wavefunction.</jats:p> | |
dc.language | en | |
dc.publisher | Frontiers Media SA | |
dc.subject | Physics | |
dc.subject | nickelates | |
dc.subject | superconductors | |
dc.subject | wavefunction quantum chemistry | |
dc.subject | doped-holes | |
dc.subject | ab initio | |
dc.title | Ab Initio Wavefunction Analysis of Electron Removal Quasi-Particle State of NdNiO<inf>2</inf> With Fully Correlated Quantum Chemical Methods | |
dc.type | Article | |
dc.date.updated | 2022-05-25T13:00:20Z | |
prism.publicationName | Frontiers in Physics | |
prism.volume | 10 | |
dc.identifier.doi | 10.17863/CAM.84876 | |
dcterms.dateAccepted | 2022-03-14 | |
rioxxterms.versionofrecord | 10.3389/fphy.2022.836784 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.identifier.eissn | 2296-424X | |
cam.issuedOnline | 2022-05-11 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router