Efficient Electronic Tunneling Governs Transport in Conducting Polymer-Insulator Blends.
View / Open Files
Authors
Michaels, Wesley
Melianas, Armantas
Fuller, Elliot J
Tassone, Christopher J
Salleo, Alberto
Publication Date
2022-06-15Journal Title
J Am Chem Soc
ISSN
0002-7863
Publisher
American Chemical Society (ACS)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Keene, S. T., Michaels, W., Melianas, A., Quill, T. J., Fuller, E. J., Giovannitti, A., McCulloch, I., et al. (2022). Efficient Electronic Tunneling Governs Transport in Conducting Polymer-Insulator Blends.. J Am Chem Soc https://doi.org/10.1021/jacs.2c02139
Abstract
Electronic transport models for conducting polymers (CPs) and blends focus on the arrangement of conjugated chains, while the contributions of the nominally insulating components to transport are largely ignored. In this work, an archetypal CP blend is used to demonstrate that the chemical structure of the non-conductive component has a substantial effect on charge carrier mobility. Upon diluting a CP with excess insulator, blends with as high as 97.4 wt % insulator can display carrier mobilities comparable to some pure CPs such as polyaniline and low regioregularity P3HT. In this work, we develop a single, multiscale transport model based on the microstructure of the CP blends, which describes the transport properties for all dilutions tested. The results show that the high carrier mobility of primarily insulator blends results from the inclusion of aromatic rings, which facilitate long-range tunneling (up to ca. 3 nm) between isolated CP chains. This tunneling mechanism calls into question the current paradigm used to design CPs, where the solubilizing or ionically conducting component is considered electronically inert. Indeed, optimizing the participation of the nominally insulating component in electronic transport may lead to enhanced electronic mobility and overall better performance in CPs.
Embargo Lift Date
2023-06-06
Identifiers
External DOI: https://doi.org/10.1021/jacs.2c02139
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337519
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk