Robust and efficient identification of optimal mixing perturbations using proxy multiscale measures.
View / Open Files
Publication Date
2022-06-13Journal Title
Philos Trans A Math Phys Eng Sci
ISSN
1364-503X
Publisher
The Royal Society
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Heffernan, C., & Caulfield, C. P. (2022). Robust and efficient identification of optimal mixing perturbations using proxy multiscale measures.. Philos Trans A Math Phys Eng Sci https://doi.org/10.1098/rsta.2021.0026
Description
Funder: National University of Ireland Travelling Studentship
Abstract
Understanding and optimizing passive scalar mixing in a diffusive fluid flow at finite Péclet number [Formula: see text] (where [Formula: see text] and [Formula: see text] are characteristic velocity and length scales, and [Formula: see text] is the molecular diffusivisity of the scalar) is a fundamental problem of interest in many environmental and industrial flows. Particularly when [Formula: see text], identifying initial perturbations of given energy that optimally and thoroughly mix fluids of initially different properties can be computationally challenging. To address this challenge, we consider the identification of initial perturbations in an idealized two-dimensional flow on a torus that extremize various measures over finite time horizons. We identify such 'optimal' initial perturbations using the 'direct-adjoint looping' method, thus requiring the evolving flow to satisfy the governing equations and boundary conditions at all points in space and time. We demonstrate that minimizing multiscale measures commonly known as 'mix-norms' over short time horizons is a computationally efficient and robust way to identify initial perturbations that thoroughly mix layered scalar distributions over relatively long time horizons, provided the magnitude of the mix-norm's index is not too large. Minimization of such mix-norms triggers the development of coherent vortical flow structures which effectively mix, with the particular properties of these flow structures depending on [Formula: see text] and also the time horizon of interest. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.
Keywords
direct-adjoint-looping, ergodic theory, mixing, optimization, Diffusion, Hydrodynamics
Identifiers
35465721, PMC9035879
External DOI: https://doi.org/10.1098/rsta.2021.0026
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337527
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk