dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD.
Authors
Sofack, Ghislain N
Papakonstantinou, Thodoris
Avraam, Demetris
Burton, Paul
Zöller, Daniela
Bishop, Tom RP
Publication Date
2022-06-03Journal Title
BMC Res Notes
ISSN
1756-0500
Publisher
Springer Science and Business Media LLC
Volume
15
Issue
1
Language
en
Type
Other
This Version
VoR
Metadata
Show full item recordCitation
Banerjee, S., Sofack, G. N., Papakonstantinou, T., Avraam, D., Burton, P., Zöller, D., & Bishop, T. R. (2022). dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD.. [Other]. https://doi.org/10.1186/s13104-022-06085-1
Abstract
OBJECTIVE: Achieving sufficient statistical power in a survival analysis usually requires large amounts of data from different sites. Sensitivity of individual-level data, ethical and practical considerations regarding data sharing across institutions could be a potential challenge for achieving this added power. Hence we implemented a federated meta-analysis approach of survival models in DataSHIELD, where only anonymous aggregated data are shared across institutions, while simultaneously allowing for exploratory, interactive modelling. In this case, meta-analysis techniques to combine analysis results from each site are a solution, but an analytic workflow involving local analysis undertaken at individual studies hinders exploration. Thus, the aim is to provide a framework for performing meta-analysis of Cox regression models across institutions without manual analysis steps for the data providers. RESULTS: We introduce a package (dsSurvival) which allows privacy preserving meta-analysis of survival models, including the calculation of hazard ratios. Our tool can be of great use in biomedical research where there is a need for building survival models and there are privacy concerns about sharing data.
Keywords
Research Note, Survival analysis, Meta-analysis, Federated analysis
Sponsorship
European Commission Horizon 2020 (H2020) Societal Challenges (824989)
Identifiers
s13104-022-06085-1, 6085
External DOI: https://doi.org/10.1186/s13104-022-06085-1
This record's DOI: https://doi.org/10.17863/CAM.85192
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk