Repository logo
 

Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research.

Published version
Peer-reviewed

Change log

Authors

Silvani, Giulia 
Bradbury, Peta 
Basirun, Carin 
Mehner, Christine 
Zalli, Detina 

Abstract

The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.

Description

Funder: This work was supported by the Australian Research Council (ARC) Discovery Project (Grant No. DP190101973) and the Charlie Teo Foundation.

Keywords

Article, /639/166/985, /631/337/475/2290, /692/4017, /631/67/1059/602, article

Journal Title

NPJ Microgravity

Conference Name

Journal ISSN

2373-8065
2373-8065

Volume Title

8

Publisher

Springer Science and Business Media LLC