Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research.
Authors
Silvani, Giulia
Bradbury, Peta
Basirun, Carin
Mehner, Christine
Zalli, Detina
Poole, Kate
Chou, Joshua
Publication Date
2022-06-03Journal Title
NPJ Microgravity
ISSN
2373-8065
Publisher
Springer Science and Business Media LLC
Volume
8
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Silvani, G., Bradbury, P., Basirun, C., Mehner, C., Zalli, D., Poole, K., & Chou, J. (2022). Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research.. NPJ Microgravity, 8 (1) https://doi.org/10.1038/s41526-022-00207-6
Description
Funder: This work was supported by the Australian Research Council (ARC) Discovery Project (Grant No. DP190101973) and the Charlie Teo Foundation.
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Keywords
Article, /639/166/985, /631/337/475/2290, /692/4017, /631/67/1059/602, article
Identifiers
s41526-022-00207-6, 207
External DOI: https://doi.org/10.1038/s41526-022-00207-6
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337784
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk