Show simple item record

dc.contributor.authorXu, Huizhen
dc.contributor.authorGiannetti, Alessandro
dc.contributor.authorSugiyama, Yuki
dc.contributor.authorZheng, Wenna
dc.contributor.authorSchneider, René
dc.contributor.authorWatanabe, Yoichiro
dc.contributor.authorOda, Yoshihisa
dc.contributor.authorPersson, Staffan
dc.date.accessioned2022-06-07T08:15:26Z
dc.date.available2022-06-07T08:15:26Z
dc.date.issued2022-05
dc.identifier.issn2046-2441
dc.identifier.other35506204
dc.identifier.otherPMC9065968
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/337806
dc.descriptionFunder: Deutsche Forschungsgemeinschaft
dc.descriptionFunder: University of Melbourne
dc.descriptionFunder: Japan Society for the Promotion of Science
dc.descriptionFunder: DFG
dc.description.abstractAll plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
dc.languageeng
dc.publisherThe Royal Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcenlmid: 101580419
dc.sourceessn: 2046-2441
dc.subjectCellulose
dc.subjectMicrotubules
dc.subjectxylem
dc.subjectPlant Cell Wall
dc.subjectCell Wall Patterning
dc.subjectCell Membrane
dc.subjectCell Wall
dc.subjectPlants
dc.subjectWater
dc.subjectXylem
dc.titleSecondary cell wall patterning-connecting the dots, pits and helices.
dc.typeArticle
dc.date.updated2022-06-07T08:15:25Z
prism.issueIdentifier5
prism.publicationNameOpen Biol
prism.volume12
dc.identifier.doi10.17863/CAM.85215
dcterms.dateAccepted2022-04-07
rioxxterms.versionofrecord10.1098/rsob.210208
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidPersson, Staffan [0000-0002-6377-5132]
dc.identifier.eissn2046-2441
pubs.funder-project-idJSPS (21H02514, 19K16168)
pubs.funder-project-idMinistry of Education, Culture, Sports, Science and Technology (19H05677)
pubs.funder-project-idNovo Nordisk (NNF19OC0056076)
pubs.funder-project-idNovo Nordisk Fonden (NNF19OC0056076)
pubs.funder-project-idARC (DP190101941, 25915)
pubs.funder-project-idVillum Fonden (25915)
pubs.funder-project-idGerman Research Foundation (453188536)
pubs.funder-project-idDanmarks Grundforskningsfond (DNRF Chair 155, DNRF155)
cam.issuedOnline2022-05-04


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International