The Case Against Smooth Null Infinity III: Early-Time Asymptotics for Higher $$\ell $$-Modes of Linear Waves on a Schwarzschild Background
Authors
Publication Date
2022-12Journal Title
Annals of PDE
ISSN
2524-5317
Publisher
Springer Science and Business Media LLC
Volume
8
Issue
2
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Kehrberger, L. M. (2022). The Case Against Smooth Null Infinity III: Early-Time Asymptotics for Higher $$\ell $$-Modes of Linear Waves on a Schwarzschild Background. Annals of PDE, 8 (2) https://doi.org/10.1007/s40818-022-00129-2
Abstract
<jats:title>Abstract</jats:title><jats:p>In this paper, we derive the early-time asymptotics for fixed-frequency solutions <jats:inline-formula><jats:alternatives><jats:tex-math>$$\phi _\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> to the wave equation <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Box _g \phi _\ell =0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mo>□</mml:mo>
<mml:mi>g</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> on a fixed Schwarzschild background (<jats:inline-formula><jats:alternatives><jats:tex-math>$$M>0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>M</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>) arising from the no incoming radiation condition on <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {I}}^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> and polynomially decaying data, <jats:inline-formula><jats:alternatives><jats:tex-math>$$r\phi _\ell \sim t^{-1}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
<mml:mo>∼</mml:mo>
<mml:msup>
<mml:mi>t</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:tex-math>$$t\rightarrow -\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>→</mml:mo>
<mml:mo>-</mml:mo>
<mml:mi>∞</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, on either a timelike boundary of constant area radius <jats:inline-formula><jats:alternatives><jats:tex-math>$$r>2M$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>2</mml:mn>
<mml:mi>M</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula><jats:bold>(I)</jats:bold> or an ingoing null hypersurface <jats:bold>(II)</jats:bold>. In case <jats:bold>(I)</jats:bold>, we show that the asymptotic expansion of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\partial _v(r\phi _\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>r</mml:mi>
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> along outgoing null hypersurfaces near spacelike infinity <jats:inline-formula><jats:alternatives><jats:tex-math>$$i^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>i</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> contains logarithmic terms at order <jats:inline-formula><jats:alternatives><jats:tex-math>$$r^{-3-\ell }\log r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>r</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
<mml:mo>-</mml:mo>
<mml:mi>ℓ</mml:mi>
</mml:mrow>
</mml:msup>
<mml:mo>log</mml:mo>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. In contrast, in case <jats:bold>(II)</jats:bold>, we obtain that the asymptotic expansion of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\partial _v(r\phi _\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>v</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>r</mml:mi>
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> near spacelike infinity <jats:inline-formula><jats:alternatives><jats:tex-math>$$i^0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>i</mml:mi>
<mml:mn>0</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> contains logarithmic terms already at order <jats:inline-formula><jats:alternatives><jats:tex-math>$$r^{-3}\log r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>r</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>log</mml:mo>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> (unless <jats:inline-formula><jats:alternatives><jats:tex-math>$$\ell =1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>ℓ</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>). These results suggest an alternative approach to the study of late-time asymptotics near future timelike infinity <jats:inline-formula><jats:alternatives><jats:tex-math>$$i^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>i</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> that does not assume conformally smooth or compactly supported Cauchy data: In case <jats:bold>(I)</jats:bold>, our results indicate a <jats:italic>logarithmically modified Price’s law</jats:italic> for each <jats:inline-formula><jats:alternatives><jats:tex-math>$$\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ℓ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>-mode. On the other hand, the data of case <jats:bold>(II)</jats:bold> lead to much stronger deviations from Price’s law. In particular, we conjecture that compactly supported scattering data on <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {H}}^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {I}}^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> lead to solutions that exhibit the same late-time asymptotics on <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {I}}^+$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> for each <jats:inline-formula><jats:alternatives><jats:tex-math>$$\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ℓ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>: <jats:inline-formula><jats:alternatives><jats:tex-math>$$r\phi _\ell |_{{\mathscr {I}}^+}\sim u^{-2}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>r</mml:mi>
<mml:msub>
<mml:mi>ϕ</mml:mi>
<mml:mi>ℓ</mml:mi>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mo>|</mml:mo>
</mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>I</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
</mml:msub>
<mml:mo>∼</mml:mo>
<mml:msup>
<mml:mi>u</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:tex-math>$$u\rightarrow \infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>u</mml:mi>
<mml:mo>→</mml:mo>
<mml:mi>∞</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>.</jats:p>
Keywords
Manuscript, Price’s law, Asymptotics, Logarithmic Asymptotics, Early-time asymptotics, Scattering constructions, Boundary value problem, Peeling
Identifiers
s40818-022-00129-2, 129
External DOI: https://doi.org/10.1007/s40818-022-00129-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/337871
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk