Structural and functional characterisation of pUL21, an α-herpesvirus phosphatase adaptor protein
View / Open Files
Authors
Advisors
Date
2021-12-01Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Benedyk, T. (2021). Structural and functional characterisation of pUL21, an α-herpesvirus phosphatase adaptor protein (Doctoral thesis). https://doi.org/10.17863/CAM.85288
Abstract
The current CoV-SARS-2 pandemic exemplifies the profound impact viruses can have upon our lives. Virus infection is a complex process where viral proteins cooperate to exploit host cell metabolism while evading immune responses. Herpes simplex virus 1 (HSV-1) is a very prevalent human herpesvirus that causes life-long infection and is known to dramatically remodel the cellular environment upon replication. This extensive manipulation is achieved using only a limited number of virus-encoded proteins, many of which possess numerous functions and exert their effects in multiple different subcellular compartments. HSV-1 pUL21 is an example of such multi-function protein: it is known to be important for assembly of new virus particles and viral cell-to-cell spread but its exact molecular functions remained unknown.
Using a high throughput interactomics screen, previous members of the group identified potential cellular binding partners of pUL21: protein phosphatase 1 (PP1) and ceramide transfer protein (CERT). This thesis presents biophysical characterization of the direct interactions between pUL21 and these partners and describes the role of pUL21 as a novel viral phosphatase adaptor that recruits PP1 to multiple substrates, including CERT, to promote their dephosphorylation. Conservational and structural analyses led to the discovery of a non-canonical linear motif in pUL21, termed TROPPO, that is critical for PP1 binding and it is absolutely conserved across α-herpesviruses. In vitro evolution experiments using HSV-1 strains with mutated TROPPO motifs revealed that the phosphatase adaptor pUL21 antagonises the activity of the virus-encoded kinase pUS3. A correct balance of kinase and phosphatase activity is shown to be essential for correct subcellular localisation of the HSV-1 nuclear egress complex and for virus replication and dissemination.
Using in vitro biochemical experiments, stable expression of pUL21 in cultured cells, and infection with wild-type HSV-1 or viruses expressing pUL21 with a mutated TROPPO motif, we confirmed that pUL21 stimulates PP1-dependent dephosphorylation of CERT and the viral nuclear egress complex component pUL31, plus additional as-yet unidentified proteins. The binding interface of the pUL21:CERT complex was determined using small-angle X-ray scattering, enabling the generation of pUL21 mutants where binding to CERT, but not to other substrates, was specifically disrupted. Generation of a CERT non-binding mutant facilitated a detailed characterization of the sphingolipid-modulatory role of pUL21 using ‘click chemistry’-based assays and revealed that pUL21-dependent upregulation of sphingomyelin turnover is required for the correct trafficking of maturating virions to the plasma membrane.
In summary, this thesis presents structural and functional characterisation of HSV-1 pUL21, dissecting the multiple roles played by this protein during the replication of HSV-1. Furthermore, this study provides first insights into the modulation of sphingolipid homeostasis during virus infection, a critically understudied host:pathogen interaction.
Keywords
hsv-1, sphingolipids, protein phosphatase 1, ceramide transfer protein, CERT, PP1, pUL21
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.85288
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk