Show simple item record

dc.contributor.authorKumar, Pankaj
dc.contributor.authorKabra, Saurabh
dc.contributor.authorCole, Jacqueline M
dc.date.accessioned2022-06-09T15:00:26Z
dc.date.available2022-06-09T15:00:26Z
dc.date.issued2022-06-09
dc.date.submitted2021-09-02
dc.identifier.issn2052-4463
dc.identifier.others41597-022-01301-w
dc.identifier.other1301
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/337942
dc.description.abstractThe emerging field of material-based data science requires information-rich databases to generate useful results which are currently sparse in the stress engineering domain. To this end, this study uses the'materials-aware' text-mining toolkit, ChemDataExtractor, to auto-generate databases of yield-strength and grain-size values by extracting such information from the literature. The precision of the extracted data is 83.0% for yield strength and 78.8% for grain size. The automatically-extracted data were organised into four databases: a Yield Strength, Grain Size, Engineering-Ready Yield Strength and Combined database. For further validation of the databases, the Combined database was used to plot the Hall-Petch relationship for, the alloy, AZ31, and similar results to the literature were found, demonstrating how one can make use of these automatically-extracted datasets.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectData Descriptor
dc.subject/639/166/988
dc.subject/639/301/1023/1026
dc.subject/639/301/1023/303
dc.subjectdata-descriptor
dc.titleAuto-generating databases of Yield Strength and Grain Size using ChemDataExtractor.
dc.typeArticle
dc.date.updated2022-06-09T15:00:26Z
prism.issueIdentifier1
prism.publicationNameSci Data
prism.volume9
dc.identifier.doi10.17863/CAM.85348
dcterms.dateAccepted2022-03-02
rioxxterms.versionofrecord10.1038/s41597-022-01301-w
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidCole, Jacqueline M [0000-0002-1552-8743]
dc.identifier.eissn2052-4463
pubs.funder-project-idRoyal Academy of Engineering (RCSRF1819\7\10)
pubs.funder-project-idRCUK | Science and Technology Facilities Council (STFC) (Fellowship support from ISIS Neutron and Muon Source)
pubs.funder-project-idU.S. Department of Energy (DOE) (DE-AC02-06CH11357)
cam.issuedOnline2022-06-09


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record