Deep neural network enabled active metasurface embedded design
dc.contributor.author | An, S | |
dc.contributor.author | Zheng, B | |
dc.contributor.author | Julian, M | |
dc.contributor.author | Williams, C | |
dc.contributor.author | Tang, H | |
dc.contributor.author | Gu, T | |
dc.contributor.author | Zhang, H | |
dc.contributor.author | Kim, HJ | |
dc.contributor.author | Hu, J | |
dc.date.accessioned | 2022-06-13T23:30:50Z | |
dc.date.available | 2022-06-13T23:30:50Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2192-8606 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/338046 | |
dc.description.abstract | <jats:title>Abstract</jats:title> <jats:p>In this paper, we propose a deep learning approach for forward modeling and inverse design of photonic devices containing embedded active metasurface structures. In particular, we demonstrate that combining neural network design of metasurfaces with scattering matrix-based optimization significantly simplifies the computational overhead while facilitating accurate objective-driven design. As an example, we apply our approach to the design of a continuously tunable bandpass filter in the mid-wave infrared, featuring narrow passband (∼10 nm), high quality factors (<jats:italic>Q</jats:italic>-factors ∼ 10<jats:sup>2</jats:sup>), and large out-of-band rejection (optical density ≥ 3). The design consists of an optical phase-change material Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te (GSST) metasurface atop a silicon heater sandwiched between two distributed Bragg reflectors (DBRs). The proposed design approach can be generalized to the modeling and inverse design of arbitrary response photonic devices incorporating active metasurfaces.</jats:p> | |
dc.publisher | Walter de Gruyter GmbH | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Deep neural network enabled active metasurface embedded design | |
dc.type | Article | |
dc.publisher.department | Department of Physics | |
dc.date.updated | 2022-06-13T15:19:20Z | |
prism.issueIdentifier | 0 | |
prism.publicationName | Nanophotonics | |
prism.volume | 0 | |
dc.identifier.doi | 10.17863/CAM.85455 | |
dcterms.dateAccepted | 2022-05-27 | |
rioxxterms.versionofrecord | 10.1515/nanoph-2022-0152 | |
rioxxterms.version | VoR | |
dc.contributor.orcid | An, S [0000-0003-4098-916X] | |
dc.contributor.orcid | Williams, C [0000-0002-6432-6515] | |
dc.contributor.orcid | Gu, T [0000-0003-3989-6927] | |
dc.identifier.eissn | 2192-8614 | |
rioxxterms.type | Journal Article/Review | |
cam.issuedOnline | 2022-06-10 | |
cam.depositDate | 2022-06-13 | |
pubs.licence-identifier | apollo-deposit-licence-2-1 | |
pubs.licence-display-name | Apollo Repository Deposit Licence Agreement |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge