Show simple item record

dc.contributor.authorSavage, T
dc.contributor.authorAkroyd, J
dc.contributor.authorMosbach, S
dc.contributor.authorKrdzavac, N
dc.contributor.authorHillman, M
dc.contributor.authorKraft, M
dc.date.accessioned2022-06-14T23:30:06Z
dc.date.available2022-06-14T23:30:06Z
dc.date.issued2022
dc.identifier.issn2632-6736
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338096
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>This article applies a knowledge graph-based approach to unify multiple heterogeneous domains inherent in climate and energy supply research. Existing approaches that rely on bespoke models with spreadsheet-type inputs are noninterpretable, static and make it difficult to combine existing domain specific models. The difficulties inherent to this approach become increasingly prevalent as energy supply models gain complexity while society pursues a net-zero future. In this work, we develop new ontologies to extend the World Avatar knowledge graph to represent gas grids, gas consumption statistics, and climate data. Using a combination of the new and existing ontologies we construct a Universal Digital Twin that integrates data describing the systems of interest and specifies respective links between domains. We represent the UK gas transmission system, and HadUK-Grid climate data set as linked data for the first time, formally associating the data with the statistical output areas used to report governmental administrative data throughout the UK. We demonstrate how computational agents contained within the World Avatar can operate on the knowledge graph, incorporating live feeds of data such as instantaneous gas flow rates, as well as parsing information into interpretable forms such as interactive visualizations. Through this approach, we enable a dynamic, interpretable, modular, and cross-domain representation of the UK that enables domain specific experts to contribute toward a national-scale digital twin.</jats:p>
dc.description.sponsorshipThis research was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. Part of this work was supported by Towards Turing 2.0 under EPSRC Grant EP/W037211/1 & The Alan Turing Institute
dc.publisherCambridge University Press (CUP)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleUniversal Digital Twin: Integration of national-scale energy systems and climate data
dc.typeArticle
dc.publisher.departmentDepartment of Chemical Engineering And Biotechnology
dc.date.updated2022-06-13T16:23:23Z
prism.publicationNameData-Centric Engineering
dc.identifier.doi10.17863/CAM.85505
dcterms.dateAccepted2022-04-29
rioxxterms.versionofrecord10.1017/dce.2022.22
rioxxterms.versionVoR
dc.contributor.orcidAkroyd, J [0000-0002-2143-8656]
dc.contributor.orcidMosbach, S [0000-0001-7018-9433]
dc.contributor.orcidKraft, M [0000-0002-4293-8924]
dc.identifier.eissn2632-6736
rioxxterms.typeJournal Article/Review
cam.issuedOnline2022-06-13
datacite.issupplementedby.doi10.17863/CAM.72550
cam.depositDate2022-06-13
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International