Software Application Profile: SUMnlmr, an R package that facilitates flexible and reproducible non-linear Mendelian randomization analyses
View / Open Files
Publication Date
2022-08-09Journal Title
International Journal of Epidemiology
ISSN
0300-5771
Publisher
Oxford University Press (OUP)
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Mason, A., & Burgess, S. (2022). Software Application Profile: SUMnlmr, an R package that facilitates flexible and reproducible non-linear Mendelian randomization analyses. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac150
Abstract
<jats:title>Abstract</jats:title>
<jats:sec>
<jats:title>Motivation</jats:title>
<jats:p>Mendelian randomization methods that estimate non-linear exposure-outcome relationships typically require individual-level data. This package implements non-linear Mendelian randomization methods using stratified summarized data, facilitating analyses where individual-level data cannot easily be shared, and additionally increasing reproducibility as summarized data can be reported. Dependence on summarized data means the methods are independent of the form of the individual-level data, increasing flexibility to different outcome types (such as continuous, binary or time-to-event outcomes).</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Implementation</jats:title>
<jats:p>SUMnlmr is available as an R package (version 3.1.0 or higher).</jats:p>
</jats:sec>
<jats:sec>
<jats:title>General features</jats:title>
<jats:p>The package implements the previously proposed fractional polynomial and piecewise linear methods on stratified summarized data that can either be estimated from individual-level data using the package or supplied by a collaborator. It constructs plots to visualize the estimated exposure-outcome relationship, and provides statistics to assess preference for a non-linear model over a linear model.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Availability</jats:title>
<jats:p>The package is freely available from GitHub [https://github.com/amymariemason/SUMnlmr].</jats:p>
</jats:sec>
Sponsorship
Wellcome Trust (204623/Z/16/Z)
Embargo Lift Date
2023-08-09
Identifiers
External DOI: https://doi.org/10.1093/ije/dyac150
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338371
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.