Show simple item record

dc.contributor.authorMason, Amy M
dc.contributor.authorBurgess, Stephen
dc.date.accessioned2022-06-27T23:30:16Z
dc.date.available2022-06-27T23:30:16Z
dc.date.issued2022
dc.identifier.issn0300-5771
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338371
dc.description.abstract<jats:title>Abstract</jats:title> <jats:sec> <jats:title>Motivation</jats:title> <jats:p>Mendelian randomization methods that estimate non-linear exposure-outcome relationships typically require individual-level data. This package implements non-linear Mendelian randomization methods using stratified summarized data, facilitating analyses where individual-level data cannot easily be shared, and additionally increasing reproducibility as summarized data can be reported. Dependence on summarized data means the methods are independent of the form of the individual-level data, increasing flexibility to different outcome types (such as continuous, binary or time-to-event outcomes).</jats:p> </jats:sec> <jats:sec> <jats:title>Implementation</jats:title> <jats:p>SUMnlmr is available as an R package (version 3.1.0 or higher).</jats:p> </jats:sec> <jats:sec> <jats:title>General features</jats:title> <jats:p>The package implements the previously proposed fractional polynomial and piecewise linear methods on stratified summarized data that can either be estimated from individual-level data using the package or supplied by a collaborator. It constructs plots to visualize the estimated exposure-outcome relationship, and provides statistics to assess preference for a non-linear model over a linear model.</jats:p> </jats:sec> <jats:sec> <jats:title>Availability</jats:title> <jats:p>The package is freely available from GitHub [https://github.com/amymariemason/SUMnlmr].</jats:p> </jats:sec>
dc.publisherOxford University Press (OUP)
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.titleSoftware Application Profile: SUMnlmr, an R package that facilitates flexible and reproducible non-linear Mendelian randomization analyses
dc.typeArticle
dc.publisher.departmentDepartment of Public Health And Primary Care, Cardiovascular Epidemiology Unit
dc.publisher.departmentMrc Biostatistics Unit
dc.date.updated2022-06-21T09:55:56Z
prism.publicationDate
prism.publicationNameINTERNATIONAL JOURNAL OF EPIDEMIOLOGY
dc.identifier.doi10.17863/CAM.85783
dcterms.dateAccepted2022-06-20
rioxxterms.versionofrecord10.1093/ije/dyac150
rioxxterms.versionAM
dc.contributor.orcidMason, Amy [0000-0002-8019-0777]
dc.contributor.orcidBurgess, Stephen [0000-0001-5365-8760]
dc.identifier.eissn1464-3685
rioxxterms.typeJournal Article/Review
pubs.funder-project-idWellcome Trust (204623/Z/16/Z)
cam.issuedOnline2022-08-09
cam.orpheus.successMon Aug 15 07:57:14 BST 2022 - Embargo updated
cam.orpheus.counter4
cam.depositDate2022-06-21
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2023-08-09


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record