Show simple item record

dc.contributor.authorSteiner, Zvi
dc.contributor.authorLanding, William M
dc.contributor.authorBohlin, Madeleine S
dc.contributor.authorGreaves, Mervyn
dc.contributor.authorPrakash, Satya
dc.contributor.authorVinayachandran, PN
dc.contributor.authorAchterberg, Eric P
dc.date.accessioned2022-06-29T19:43:57Z
dc.date.available2022-06-29T19:43:57Z
dc.date.issued2022-06
dc.date.submitted2021-09-11
dc.identifier.issn0886-6236
dc.identifier.othergbc21303
dc.identifier.other2021gb007184
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338466
dc.descriptionFunder: MoES, Indian National Centre for Ocean Information Services; Id: http://dx.doi.org/10.13039/501100004814
dc.description.abstractAbstract: Lithium has limited biological activity and can readily replace aluminium, magnesium and iron ions in aluminosilicates, making it a proxy for the inorganic silicate cycle and its potential link to the carbon cycle. Data from the North Pacific Ocean, tropical Indian Ocean, Southern Ocean and Red Sea suggest that salinity normalized dissolved lithium concentrations vary by up to 2%–3% in the Indo‐Pacific Ocean. The highest lithium concentrations were measured in surface waters of remote North Pacific and Indian Ocean stations that receive relatively high fluxes of dust. The lowest dissolved lithium concentrations were measured just below the surface mixed layer of the stations with highest surface water concentrations, consistent with removal into freshly forming aluminium rich phases and manganese oxides. In the North Pacific, water from depths >2,000 m is slightly depleted in lithium compared to the initial composition of Antarctic Bottom Water, likely due to uptake of lithium by authigenically forming aluminosilicates. The results of this study suggest that the residence time of lithium in the ocean may be significantly shorter than calculated from riverine and hydrothermal fluxes.
dc.languageen
dc.publisherAmerican Geophysical Union (AGU)
dc.subjectBIOGEOSCIENCES
dc.subjectBiogeochemical kinetics and reaction modeling
dc.subjectBiogeochemical cycles, processes, and modeling
dc.subjectNutrients and nutrient cycling
dc.subjectCRYOSPHERE
dc.subjectBiogeochemistry
dc.subjectGEOCHEMISTRY
dc.subjectMarine geochemistry
dc.subjectGLOBAL CHANGE
dc.subjectOCEANOGRAPHY: BIOLOGICAL AND CHEMICAL
dc.subjectMarine inorganic chemistry
dc.subjectMarine organic chemistry
dc.subjectPALEOCEANOGRAPHY
dc.subjectResearch Article
dc.subjectdust
dc.subjectGEOTRACES
dc.subjectNorth Pacific
dc.subjectIndian Ocean
dc.subjectlithium
dc.subjectLi/Na
dc.titleVariability in the Concentration of Lithium in the Indo‐Pacific Ocean
dc.typeArticle
dc.date.updated2022-06-29T19:43:56Z
prism.issueIdentifier6
prism.publicationNameGlobal Biogeochemical Cycles
prism.volume36
dc.identifier.doi10.17863/CAM.85879
dcterms.dateAccepted2022-06-03
rioxxterms.versionofrecord10.1029/2021gb007184
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidSteiner, Zvi [0000-0002-9584-4956]
dc.contributor.orcidLanding, William M [0000-0002-7514-3247]
dc.contributor.orcidBohlin, Madeleine S [0000-0002-2101-9005]
dc.contributor.orcidGreaves, Mervyn [0000-0001-8014-8627]
dc.contributor.orcidVinayachandran, PN [0000-0002-4915-5455]
dc.contributor.orcidAchterberg, Eric P [0000-0002-3061-2767]
dc.identifier.eissn1944-9224
pubs.funder-project-idDeutsche Forschungsgemeinschaft (458035111)
pubs.funder-project-idNational Science Foundation USA (0223378)
cam.issuedOnline2022-06-22


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record