Repository logo
 

Tailored acoustic metamaterials. Part II. Extremely thick-walled Helmholtz resonator arrays.

Published version
Peer-reviewed

Change log

Abstract

We present a solution method which combines the technique of matched asymptotic expansions with the method of multipole expansions to determine the band structure of cylindrical Helmholtz resonator arrays in two dimensions. The resonator geometry is considered in the limit as the wall thickness becomes very large compared with the aperture width (the extremely thick-walled limit). In this regime, the existing treatment in Part I (Smith & Abrahams, 2022 Tailored acoustic metamaterials. Part I. Thin- and thick-walled Helmholtz resonator arrays), with updated parameters, is found to return spurious spectral behaviour. We derive a regularized system which overcomes this issue and also derive compact asymptotic descriptions for the low-frequency dispersion equation in this setting. We find that the matched-asymptotic system is able to recover the first few bands over the entire Brillouin zone with ease, when suitably truncated. A homogenization treatment is outlined for describing the effective bulk modulus and effective density tensor of the resonator array for all wall thicknesses. We demonstrate that extremely thick-walled resonators are able to achieve exceptionally low Helmholtz resonant frequencies, and present closed-form expressions for determining these explicitly. We anticipate that the analytical expressions and the formulation outlined here may prove useful in designing metamaterials for industrial and other applications.

Description

Keywords

Research articles, acoustics, Helmholtz resonator, two-dimensional array, matched asymptotic expansions, multipole methods, metamaterial

Journal Title

Proc Math Phys Eng Sci

Conference Name

Journal ISSN

1364-5021
1471-2946

Volume Title

478

Publisher

The Royal Society
Sponsorship
Engineering and Physical Sciences Research Council (EP/R014604/1)