Repository logo
 

Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate.

Published version
Peer-reviewed

Change log

Authors

Abstract

Detailed examination of the impact of modern space launches on the Earth's atmosphere is crucial, given booming investment in the space industry and an anticipated space tourism era. We develop air pollutant emissions inventories for rocket launches and re-entry of reusable components and debris in 2019 and for a speculative space tourism scenario based on the recent billionaire space race. This we include in the global GEOS-Chem model coupled to a radiative transfer model to determine the influence on stratospheric ozone (O3) and climate. Due to recent surge in re-entering debris and reusable components, nitrogen oxides from re-entry heating and chlorine from solid fuels contribute equally to all stratospheric O3 depletion by contemporary rockets. Decline in global stratospheric O3 is small (0.01%), but reaches 0.15% in the upper stratosphere (∼5 hPa, 40 km) in spring at 60-90°N after a decade of sustained 5.6% a-1 growth in 2019 launches and re-entries. This increases to 0.24% with a decade of emissions from space tourism rockets, undermining O3 recovery achieved with the Montreal Protocol. Rocket emissions of black carbon (BC) produce substantial global mean radiative forcing of 8 mW m-2 after just 3 years of routine space tourism launches. This is a much greater contribution to global radiative forcing (6%) than emissions (0.02%) of all other BC sources, as radiative forcing per unit mass emitted is ∼500 times more than surface and aviation sources. The O3 damage and climate effect we estimate should motivate regulation of an industry poised for rapid growth.

Description

Keywords

GEOS‐Chem, black carbon, ozone depletion, radiative forcing, rockets, space tourism

Journal Title

Earths Future

Conference Name

Journal ISSN

2328-4277
2328-4277

Volume Title

10

Publisher

American Geophysical Union (AGU)
Sponsorship
EC |H2020 |H2020 Priority Excellent Science |H2020 European Research Council (851854)