Show simple item record

dc.contributor.authorBonifacio, J
dc.date.accessioned2022-06-29T19:46:10Z
dc.date.available2022-06-29T19:46:10Z
dc.date.issued2022
dc.date.submitted2022-01-21
dc.identifier.issn1029-8479
dc.identifier.otherjhep03(2022)093
dc.identifier.other17987
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338511
dc.description.abstractThe eigenvalues of the Laplace-Beltrami operator and the integrals of products of eigenfunctions and holomorphic $s$-differentials satisfy certain consistency conditions on closed hyperbolic surfaces. These consistency conditions can be derived by using spectral decompositions to write quadruple overlap integrals in terms of triple overlap integrals in different ways. We show how to efficiently construct these consistency conditions and use them to derive upper bounds on eigenvalues, following the approach of the conformal bootstrap. As an example of such a bootstrap bound, we find a numerical upper bound on the spectral gap of closed orientable hyperbolic surfaces that is nearly saturated by the Bolza surface.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectRegular Article - Theoretical Physics
dc.subjectDifferential and Algebraic Geometry
dc.subjectScale and Conformal Symmetries
dc.titleBootstrapping closed hyperbolic surfaces
dc.typeArticle
dc.date.updated2022-06-29T19:46:10Z
prism.issueIdentifier3
prism.publicationNameJournal of High Energy Physics
prism.volume2022
dc.identifier.doi10.17863/CAM.85924
dcterms.dateAccepted2022-03-04
rioxxterms.versionofrecord10.1007/JHEP03(2022)093
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidBonifacio, J [0000-0001-6633-7341]
dc.identifier.eissn1029-8479
dc.publisher.urlhttp://dx.doi.org/10.1007/JHEP03(2022)093
cam.issuedOnline2022-03-15
dc.identifier.arxiv2111.13215


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record