The ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids.
Authors
Yang, Chenxing
Zaccone, Alessio
Zhang, Lei
Nakamura, Mitsutaka
Publication Date
2022-06-25Journal Title
Nat Commun
ISSN
2041-1723
Publisher
Springer Science and Business Media LLC
Volume
13
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Yu, Y., Yang, C., Baggioli, M., Phillips, A. E., Zaccone, A., Zhang, L., Kajimoto, R., et al. (2022). The ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids.. Nat Commun, 13 (1) https://doi.org/10.1038/s41467-022-31349-6
Abstract
The vibrational properties of crystalline bulk materials are well described by Debye theory, which successfully predicts the quadratic ω2 low-frequency scaling of the vibrational density of states. However, the analogous framework for nanoconfined materials with fewer degrees of freedom has been far less well explored. Using inelastic neutron scattering, we characterize the vibrational density of states of amorphous ice confined inside graphene oxide membranes and we observe a crossover from the Debye ω2 scaling to an anomalous ω3 behaviour upon reducing the confinement size L. Additionally, using molecular dynamics simulations, we confirm the experimental findings and prove that such a scaling appears in both crystalline and amorphous solids under slab-confinement. We theoretically demonstrate that this low-frequency ω3 law results from the geometric constraints on the momentum phase space induced by confinement along one spatial direction. Finally, we predict that the Debye scaling reappears at a characteristic frequency ω× = vL/2π, with v the speed of sound of the material, and we confirm this quantitative estimate with simulations.
Keywords
Article, /639/766/119/1002, /639/301/357, article
Identifiers
s41467-022-31349-6, 31349
External DOI: https://doi.org/10.1038/s41467-022-31349-6
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338520
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk